skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Intentional computational level design
The procedural generation of levels and content in video games is a challenging AI problem. Often such generation relies on an intelligent way of evaluating the content being generated so that constraints are satisfied and/or objectives maximized. In this work, we address the problem of creating levels that are not only playable but also revolve around specific mechanics in the game. We use constrained evolutionary algorithms and quality-diversity algorithms to generate small sections of Super Mario Bros levels called scenes, using three different simulation approaches: Limited Agents, Punishing Model, and Mechanics Dimensions. All three approaches are able to create scenes that give opportunity for a player to encounter or use targeted mechanics with different properties. We conclude by discussing the advantages and disadvantages of each approach and compare them to each other.  more » « less
Award ID(s):
1717324
PAR ID:
10132527
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
GECCO '19: Proceedings of the Genetic and Evolutionary Computation Conference
Page Range / eLocation ID:
796 to 803
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Video game tutorials allow players to gain mastery over game skills and mechanics. To hone players’ skills, it is beneficial from practicing in environments that promote individ- ual player skill sets. However, automatically generating environ- ments which are mechanically similar to one-another is a non- trivial problem. This paper presents a level generation method for Super Mario by stitching together pre-generated “scenes” that contain specific mechanics, using mechanic-sequences from agent playthroughs as input specifications. Given a sequence of mechanics, the proposed system uses an FI-2Pop algorithm and a corpus of scenes to perform automated level authoring. The proposed system outputs levels that can be beaten using a similar mechanical sequence to the target mechanic sequence but with a different playthrough experience. We compare the proposed system to a greedy method that selects scenes that maximize the number of matched mechanics. Unlike the greedy approach, the proposed system is able to maximize the number of matched mechanics while reducing emergent mechanics using the stitching process. 
    more » « less
  2. null (Ed.)
    This paper introduces a fully automatic method of mechanic illumination for general video game level generation. Using the Constrained MAP-Elites algorithm and the GVG-AI framework, this system generates the simplest tile based levels that contain specific sets of game mechanics and also satisfy playability constraints. We apply this method to illuminate the mechanic space for four different games in GVG-AI: Zelda, Solarfox, Plants, and RealPortals. With this system, we can generate playable levels that contain different combinations of most of the possible mechanics. These levels can later be used to populate game tutorials that teach players how to use the mechanics of the game. 
    more » « less
  3. By allowing people to manipulate digital content placed in the real world, Augmented Reality (AR) provides immersive and enriched experiences in a variety of domains. Despite its increasing popularity, providing a seamless AR experience under bandwidth fluctuations is still a challenge, since delivering these experiences at photorealistic quality with minimal latency requires high bandwidth. Streaming approaches have already been proposed to solve this problem, but they require accurate prediction of the Field-Of-View of the user to only stream those regions of scene that are most likely to be watched by the user. To solve this prediction problem, we study in this paper the watching behavior of users exploring different types of AR scenes via mobile devices. To this end, we introduce the ACE Dataset, the first dataset collecting movement data of 50 users exploring 5 different AR scenes. We also propose a four-feature taxonomy for AR scene design, which allows categorizing different types of AR scenes in a methodical way, and supporting further research in this domain. Motivated by the ACE dataset analysis results, we develop a novel user visual attention prediction algorithm that jointly utilizes information of users' historical movements and digital objects positions in the AR scene. The evaluation on the ACE Dataset show the proposed approach outperforms baseline approaches under prediction horizons of variable lengths, and can therefore be beneficial to the AR ecosystem in terms of bandwidth reduction and improved quality of users' experience. 
    more » « less
  4. Neural Radiance Field (NeRF) approaches learn the underlying 3D representation of a scene and generate photorealistic novel views with high fidelity. However, most proposed settings concentrate on modelling a single object or a single level of a scene. However, in the real world, we may capture a scene at multiple levels, resulting in a layered capture. For example, tourists usually capture a monument’s exterior structure before capturing the inner structure. Modelling such scenes in 3D with seamless switching between levels can drastically improve immersive experiences. However, most existing techniques struggle in modelling such scenes. We propose Strata-NeRF, a single neural radiance field that implicitly captures a scene with multiple levels. Strata-NeRF achieves this by conditioning the NeRFs on Vector Quantized (VQ) latent representations which allow sudden changes in scene structure. We evaluate the effectiveness of our approach in multi-layered synthetic dataset comprising diverse scenes and then further validate its generalization on the real-world RealEstate 10k dataset. We find that Strata-NeRF effectively captures stratified scenes, minimizes artifacts, and synthesizes high-fidelity views compared to existing approaches. 
    more » « less
  5. Ippoliti, E; Sterpetti, F (Ed.)
    This chapter first consolidates a set of important heuristic strategies used for constructing innovative scientific models from three books, including studies in the history of genetics and electromagnetism, and an expert think-aloud study in mechanics. Twenty-four strategies are identified, most of which are field-general. Patterns in their use suggest a partially organized hierarchy of interconnected strategies and substrategies, contrary to the view that heuristics are simply tried in random order. Strategies at four different size and time scale levels are described, including larger Modeling Cycle Phases of model generation, evaluation, and modification, each of which can utilize many smaller Tactical Heuristics as substrategies, e.g., analogy, or testing predictions from the model. These in turn can utilize Grounded Imagistic Processes, such as imagistic mental simulation, an important alternative to deduction for evaluating a model by running it. The framework links higher level, serially organized processes with lower level, imagery-based processes. Its intermediate degree of organization is neither anarchistic, nor fully algorithmic. Possible benefits of organization are narrowing the search space involved and balancing sources of model construction and criticism for productive creativity. Unorganized, spontaneous processes are also discussed, along with their possible benefits. 
    more » « less