skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards field-of-view prediction for augmented reality applications on mobile devices
By allowing people to manipulate digital content placed in the real world, Augmented Reality (AR) provides immersive and enriched experiences in a variety of domains. Despite its increasing popularity, providing a seamless AR experience under bandwidth fluctuations is still a challenge, since delivering these experiences at photorealistic quality with minimal latency requires high bandwidth. Streaming approaches have already been proposed to solve this problem, but they require accurate prediction of the Field-Of-View of the user to only stream those regions of scene that are most likely to be watched by the user. To solve this prediction problem, we study in this paper the watching behavior of users exploring different types of AR scenes via mobile devices. To this end, we introduce the ACE Dataset, the first dataset collecting movement data of 50 users exploring 5 different AR scenes. We also propose a four-feature taxonomy for AR scene design, which allows categorizing different types of AR scenes in a methodical way, and supporting further research in this domain. Motivated by the ACE dataset analysis results, we develop a novel user visual attention prediction algorithm that jointly utilizes information of users' historical movements and digital objects positions in the AR scene. The evaluation on the ACE Dataset show the proposed approach outperforms baseline approaches under prediction horizons of variable lengths, and can therefore be beneficial to the AR ecosystem in terms of bandwidth reduction and improved quality of users' experience.  more » « less
Award ID(s):
1841520
PAR ID:
10318794
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
MMSys '20: 11th ACM Multimedia Systems Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mobile Augmented Reality (AR), which overlays digital information with real-world scenes surrounding a user, provides an enhanced mode of interaction with the ambient world. Contextual AR applications rely on image recognition to identify objects in the view of the mobile device. In practice, due to image distortions and device resource constraints, achieving high performance image recognition for AR is challenging. Recent advances in edge computing offer opportunities for designing collaborative image recognition frameworks for AR. In this demonstration, we present CollabAR, an edge-assisted collaborative image recognition framework. CollabAR allows AR devices that are facing the same scene to collaborate on the recognition task. Demo participants develop an intuition for different image distortions and their impact on image recognition accuracy. We showcase how heterogeneous images taken by different users can be aggregated to improve recognition accuracy and provide a better user experience in AR. 
    more » « less
  2. Augmented Reality (AR) experiences tightly associate virtual contents with environmental entities. However, the dissimilarity of different environments limits the adaptive AR content behaviors under large-scale deployment. We propose ScalAR, an integrated workflow enabling designers to author semantically adaptive AR experiences in Virtual Reality (VR). First, potential AR consumers collect local scenes with a semantic understanding technique. ScalAR then synthesizes numerous similar scenes. In VR, a designer authors the AR contents’ semantic associations and validates the design while being immersed in the provided scenes. We adopt a decision-tree-based algorithm to fit the designer’s demonstrations as a semantic adaptation model to deploy the authored AR experience in a physical scene. We further showcase two application scenarios authored by ScalAR and conduct a two-session user study where the quantitative results prove the accuracy of the AR content rendering and the qualitative results show the usability of ScalAR. 
    more » « less
  3. Augmented Reality (AR) enhances the real world by integrating virtual content, yet ensuring the quality, usability, and safety of AR experiences presents significant challenges. Could Vision-Language Models (VLMs) offer a solution for the automated evaluation of AR-generated scenes? Could Vision-Language Models (VLMs) offer a solution for the automated evaluation of AR-generated scenes? In this study, we evaluate the capabilities of three state-of-the-art commercial VLMs -- GPT, Gemini, and Claude -- in identifying and describing AR scenes. For this purpose, we use DiverseAR, the first AR dataset specifically designed to assess VLMs' ability to analyze virtual content across a wide range of AR scene complexities. Our findings demonstrate that VLMs are generally capable of perceiving and describing AR scenes, achieving a True Positive Rate (TPR) of up to 93% for perception and 71% for description. While they excel at identifying obvious virtual objects, such as a glowing apple, they struggle when faced with seamlessly integrated content, such as a virtual pot with realistic shadows. Our results highlight both the strengths and the limitations of VLMs in understanding AR scenarios. We identify key factors affecting VLM performance, including virtual content placement, rendering quality, and physical plausibility. This study underscores the potential of VLMs as tools for evaluating the quality of AR experiences. 
    more » « less
  4. Augmented/virtual reality (AR/VR) technologies can be deployed in a household environment for applications such as checking the weather or traffic reports, watching a summary of news, or attending classes. Since AR/VR applications are highly delay sensitive, delivering these types of reports in maximum quality could be very challenging. In this paper, we consider that users go through a series of AR/VR experience units that can be delivered at different experience quality levels. In order to maximize the quality of the experience while minimizing the cost of delivering it, we aim to predict the users’ behavior in the home and the experiences they are interested in at specific moments in time. We describe a deep learning based technique to predict the users’ requests from AR/VR devices and optimize the local caching of experience units. We evaluate the performance of the proposed technique on two real-world datasets and compare our results with other baselines. Our results show that predicting users’ requests can improve the quality of experience and decrease the cost of delivery. 
    more » « less
  5. Scene understanding is a key technical challenge within the autonomous driving domain. It requires a deep semantic understanding of the entities and relations found within complex physical and social environments that is both accurate and complete. In practice, this can be accomplished by representing entities in a scene and their relations as a knowledge graph (KG). This scene knowledge graph may then be utilized for the task of entity prediction, leading to improved scene understanding. In this paper, we will define and formalize this problem as Knowledge-based Entity Prediction (KEP). KEP aims to improve scene understanding by predicting potentially unrecognized entities by leveraging heterogeneous, high-level semantic knowledge of driving scenes. An innovative neuro-symbolic solution for KEP is presented, based on knowledge-infused learning, which 1) introduces a dataset agnostic ontology to describe driving scenes, 2) uses an expressive, holistic representation of scenes with knowledge graphs, and 3) proposes an effective, non-standard mapping of the KEP problem to the problem of link prediction (LP) using knowledge-graph embeddings (KGE). Using real, complex and high-quality data from urban driving scenes, we demonstrate its effectiveness by showing that the missing entities may be predicted with high precision (0.87 Hits@1) while significantly outperforming the non-semantic/rule-based baselines. 
    more » « less