skip to main content

Title: Towards field-of-view prediction for augmented reality applications on mobile devices
By allowing people to manipulate digital content placed in the real world, Augmented Reality (AR) provides immersive and enriched experiences in a variety of domains. Despite its increasing popularity, providing a seamless AR experience under bandwidth fluctuations is still a challenge, since delivering these experiences at photorealistic quality with minimal latency requires high bandwidth. Streaming approaches have already been proposed to solve this problem, but they require accurate prediction of the Field-Of-View of the user to only stream those regions of scene that are most likely to be watched by the user. To solve this prediction problem, we study in this paper the watching behavior of users exploring different types of AR scenes via mobile devices. To this end, we introduce the ACE Dataset, the first dataset collecting movement data of 50 users exploring 5 different AR scenes. We also propose a four-feature taxonomy for AR scene design, which allows categorizing different types of AR scenes in a methodical way, and supporting further research in this domain. Motivated by the ACE dataset analysis results, we develop a novel user visual attention prediction algorithm that jointly utilizes information of users' historical movements and digital objects positions in the AR scene. The more » evaluation on the ACE Dataset show the proposed approach outperforms baseline approaches under prediction horizons of variable lengths, and can therefore be beneficial to the AR ecosystem in terms of bandwidth reduction and improved quality of users' experience. « less
Authors:
; ; ; ; ;
Award ID(s):
1841520
Publication Date:
NSF-PAR ID:
10318794
Journal Name:
MMSys '20: 11th ACM Multimedia Systems Conference
Sponsoring Org:
National Science Foundation
More Like this
  1. Mobile Augmented Reality (AR), which overlays digital information with real-world scenes surrounding a user, provides an enhanced mode of interaction with the ambient world. Contextual AR applications rely on image recognition to identify objects in the view of the mobile device. In practice, due to image distortions and device resource constraints, achieving high performance image recognition for AR is challenging. Recent advances in edge computing offer opportunities for designing collaborative image recognition frameworks for AR. In this demonstration, we present CollabAR, an edge-assisted collaborative image recognition framework. CollabAR allows AR devices that are facing the same scene to collaborate on the recognition task. Demo participants develop an intuition for different image distortions and their impact on image recognition accuracy. We showcase how heterogeneous images taken by different users can be aggregated to improve recognition accuracy and provide a better user experience in AR.
  2. Virtual Reality (VR), together with the network infrastructure, can provide an interactive and immersive experience for multiple users simultaneously and thus enables collaborative VR applications (e.g., VR-based classroom). However, the satisfactory user experience requires not only high-resolution panoramic image rendering but also extremely low latency and seamless user experience. Besides, the competition for limited network resources (e.g., multiple users share the total limited bandwidth) poses a significant challenge to collaborative user experience, in particular under the wireless network with time-varying capacities. While existing works have tackled some of these challenges, a principled design considering all those factors is still missing. In this paper, we formulate a combinatorial optimization problem to maximize the Quality of Experience (QoE), defined as the linear combination of the quality, the average VR content delivery delay, and variance of the quality over a finite time horizon. In particular, we incorporate the influence of imperfect motion prediction when considering the quality of the perceived contents. However, the optimal solution to this problem can not be implemented in real-time since it relies on future decisions. Then, we decompose the optimization problem into a series of combinatorial optimization in each time slot and develop a low-complexity algorithm that canmore »achieve at least 1/2 of the optimal value. Despite this, the trace-based simulation results reveal that our algorithm performs very close to the optimal offline solution. Furthermore, we implement our proposed algorithm in a practical system with commercial mobile devices and demonstrate its superior performance over state-of-the-art algorithms. We open-source our implementations on https://github.com/SNeC-Lab-PSU/ICDCS-CollaborativeVR.« less
  3. Mobile Augmented Reality (AR), which overlays digital content on the real-world scenes surrounding a user, is bringing immersive interactive experiences where the real and virtual worlds are tightly coupled. To enable seamless and precise AR experiences, an image recognition system that can accurately recognize the object in the camera view with low system latency is required. However, due to the pervasiveness and severity of image distortions, an effective and robust image recognition solution for “in the wild” mobile AR is still elusive. In this article, we present CollabAR, an edge-assisted system that provides distortion-tolerant image recognition for mobile AR with imperceptible system latency. CollabAR incorporates both distortion-tolerant and collaborative image recognition modules in its design. The former enables distortion-adaptive image recognition to improve the robustness against image distortions, while the latter exploits the spatial-temporal correlation among mobile AR users to improve recognition accuracy. Moreover, as it is difficult to collect a large-scale image distortion dataset, we propose a Cycle-Consistent Generative Adversarial Network-based data augmentation method to synthesize realistic image distortion. Our evaluation demonstrates that CollabAR achieves over 85% recognition accuracy for “in the wild” images with severe distortions, while reducing the end-to-end system latency to as low as 18.2 ms.
  4. Many have predicted the future of the Web to be the integration of Web content with the real-world through technologies such as Augmented Reality (AR). This has led to the rise of Extended Reality (XR) Web Browsers used to shorten the long AR application development and deployment cycle of native applications especially across different platforms. As XR Browsers mature, we face new challenges related to collaborative and multi-user applications that span users, devices, and machines. These collaborative XR applications require: (1) networking support for scaling to many users, (2) mechanisms for content access control and application isolation, and (3) the ability to host application logic near clients or data sources to reduce application latency. In this paper, we present the design and evaluation of the AR Edge Networking Architecture (ARENA) which is a platform that simplifies building and hosting collaborative XR applications on WebXR capable browsers. ARENA provides a number of critical components including: a hierarchical geospatial directory service that connects users to nearby servers and content, a token-based authentication system for controlling user access to content, and an application/service runtime supervisor that can dispatch programs across any network connected device. All of the content within ARENA exists as endpointsmore »in a PubSub scene graph model that is synchronized across all users. We evaluate ARENA in terms of client performance as well as benchmark end-to-end response-time as load on the system scales. We show the ability to horizontally scale the system to Internet-scale with scenes containing hundreds of users and latencies on the order of tens of milliseconds. Finally, we highlight projects built using ARENA and showcase how our approach dramatically simplifies collaborative multi-user XR development compared to monolithic approaches.« less
  5. Augmented/virtual reality (AR/VR) technologies can be deployed in a household environment for applications such as checking the weather or traffic reports, watching a summary of news, or attending classes. Since AR/VR applications are highly delay sensitive, delivering these types of reports in maximum quality could be very challenging. In this paper, we consider that users go through a series of AR/VR experience units that can be delivered at different experience quality levels. In order to maximize the quality of the experience while minimizing the cost of delivering it, we aim to predict the users’ behavior in the home and the experiences they are interested in at specific moments in time. We describe a deep learning based technique to predict the users’ requests from AR/VR devices and optimize the local caching of experience units. We evaluate the performance of the proposed technique on two real-world datasets and compare our results with other baselines. Our results show that predicting users’ requests can improve the quality of experience and decrease the cost of delivery.