skip to main content


Title: Revisiting the Dynamics of Eyewall Contraction of Tropical Cyclones
The dynamics of eyewall contraction of tropical cyclones (TCs) has been revisited in this study based on both three-dimensional and axisymmetric simulations and dynamical diagnostics. Because eyewall contraction is closely related to the contraction of the radius of maximum wind (RMW), its dynamics is thus often studied by examining the RMW tendency in previous studies. Recently, Kieu and Stern et al. proposed two different frameworks to diagnose the RMW tendency but had different conclusions. In this study, the two frameworks are evaluated first based on theoretical analysis and idealized numerical simulations. It is shown that the framework of Kieu is a special case of the earlier framework of Willoughby et al. if the directional derivative is applied. An extension of Stern et al.’s approach not only can reproduce but also can predict the RMW tendency. A budget of the azimuthal-mean tangential wind tendency indicates that the contributions by radial and vertical advections to the RMW tendency vary with height. Namely, radial advection dominates the RMW contraction in the lower boundary layer, and vertical advection favors the RMW contraction in the upper boundary layer and lower troposphere. In addition to the curvature, the increase of the radial gradient of horizontal mixing (including the resolved eddy mixing in three dimensions) near the eyewall prohibits eyewall contraction in the lower boundary layer. Besides, the vertical mixing including surface friction also plays an important role in the cessation of eyewall contraction in the lower boundary layer.  more » « less
Award ID(s):
1834300
NSF-PAR ID:
10132606
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
76
Issue:
10
ISSN:
0022-4928
Page Range / eLocation ID:
3229 to 3245
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The first successful simulation of tropical cyclone (TC) intensification was achieved with a three-layer model, often named the Ooyama-type three-layer model, which consists of a slab boundary layer and two shallow water layers above. Later studies showed that the use of a slab boundary layer would produce unrealistic boundary layer wind structure and too strong eyewall updraft at the top of TC boundary layer and thus simulate unrealistically rapid intensification compared to the use of a height-parameterized boundary layer. To fully consider the highly height-dependent boundary layer dynamics in the Ooyama-type three-layer model, this study replaced the slab boundary layer with a multilevel boundary layer in the Ooyama-type model and used it to conduct simulations of TC intensification and also compared the simulation with that from the model version with a slab boundary layer. Results show that compared with the simulation with a slab boundary layer, the use of a multilevel boundary layer can greatly improve simulations of the boundary-layer wind structure and the strength and radial location of eyewall updraft, and thus more realistic intensification rate due to better treatments of the surface layer processes and the nonlinear advection terms in the boundary layer. Sensitivity of the simulated TCs to the model configuration and to both horizontal and vertical mixing lengths, sea surface temperature, the Coriolis parameter, and the initial TC vortex structure are also examined. The results demonstrate that this new model can reproduce various sensitivities comparable to those found in previous studies using fully physics models. 
    more » « less
  2. In a tropical cyclone (TC), turbulence not only exists in the planetary boundary layer (PBL) but also can be generated above the PBL by the cloud processes in the eyewall and rainbands. It is found that the Hurricane Analysis and Forecast System (HAFS), a new multi-scale operational model for TC prediction, fails to capture the intense turbulent mixing in eyewall and rainband clouds due to a poor estimation of static stability in clouds. The problem is fixed by including the effects of multi-phase water in the stability calculation. Simulations of 21 TCs and tropical storms in the North Atlantic basin of 2016–2019 hurricane seasons totaling 118 forecast cycles show that the stability correction substantially improves HAFS's skill in predicting storm track and intensity. Analyses of HAFS's simulations of Hurricane Michael (2018) show that the positive tendency of vortex's tangential wind resulting from the radially inward transport of absolute vorticity dominates the eddy correlation tendencies induced by the model-resolved asymmetric eddies and serves as a main mechanism for the rapid intensification of Michael. The sub-grid scale (SGS) turbulent transport above the PBL in the eyewall plays a pivotal role in initiating a positive feedback among the eyewall convection, mean secondary overturning circulation, vortex acceleration via the inward transport of absolute vorticity, surface evaporation, and radial convergence of moisture in the PBL. Without the SGS transport above the PBL, the model-resolved vertical transport alone may not be sufficient in initiating the positive feedback underlying the rapid intensification of TCs. 
    more » « less
  3. The surface wind structure and vertical turbulent transport processes in the eyewall of hurricane Isabel (2003) are investigated using six large-eddy simulations (LESs) with different horizontal grid spacing and three-dimensional (3D) sub-grid scale (SGS) turbulent mixing models and a convection permitting simulation that uses a coarser grid spacing and one-dimensional vertical turbulent mixing scheme. The mean radius-height distribution of storm tangential wind and radial flow, vertical velocity structure, and turbulent kinetic energy and momentum fluxes in the boundary layer generated by LESs are consistent with those derived from historical dropsonde composites, Doppler radar, and aircraft measurements. Unlike the convection permitting simulation that produces storm wind fields lacking small-scale disturbances, all LESs are able to produce sub-kilometer and kilometer scale eddy circulations in the eyewall. The inter-LES differences generally reduce with the decrease of model grid spacing. At 100-m horizontal grid spacing, the vertical momentum fluxes induced by the model-resolved eddies and the associated eddy exchange coefficients in the eyewall simulated by the LESs with different 3D SGS mixing schemes are fairly consistent. Although with uncertainties, the decomposition in terms of eddy scales suggests that sub-kilometer eddies are mainly responsible for the vertical turbulent transport within the boundary layer (~1 km depth following the conventional definition) whereas eddies greater than 1 km become the dominant contributors to the vertical momentum transport above the boundary layer in the eyewall. The strong dependence of vertical turbulent transport on eddy scales suggests that the vertical turbulent mixing parameterization in mesoscale simulations of tropical cyclones is ultimately a scale-sensitive problem. 
    more » « less
  4. Abstract

    The axisymmetric structure of the inner-core hurricane boundary layer (BL) during intensification [IN; intensity tendency ≥20 kt (24 h)−1, where 1 kt ≈ 0.5144 m s−1], weakening [WE; intensity tendency <−10 kt (24 h)−1], and steady-state [SS; the remainder] periods are analyzed using composites of GPS dropwindsondes from reconnaissance missions between 1998 and 2015. A total of 3091 dropsondes were composited for analysis below 2.5-km elevation—1086 during IN, 1042 during WE, and 963 during SS. In nonintensifying hurricanes, the low-level tangential wind is greater outside the radius of maximum wind (RMW) than for intensifying hurricanes, implying higher inertial stability (I2) at those radii for nonintensifying hurricanes. Differences in tangential wind structure (and I2) between the groups also imply differences in secondary circulation. The IN radial inflow layer is of nearly equal or greater thickness than nonintensifying groups, and all groups show an inflow maximum just outside the RMW. Nonintensifying hurricanes have stronger inflow outside the eyewall region, likely associated with frictionally forced ascent out of the BL and enhanced subsidence into the BL at radii outside the RMW. Equivalent potential temperatures (θe) and conditional stability are highest inside the RMW of nonintensifying storms, which is potentially related to TC intensity. At greater radii, inflow layer θe is lowest in WE hurricanes, suggesting greater subsidence or more convective downdrafts at those radii compared to IN and SS hurricanes. Comparisons of prior observational and theoretical studies are highlighted, especially those relating BL structure to large-scale vortex structure, convection, and intensity.

     
    more » « less
  5. In tropical cyclones (TCs), the peak wind speed is typically found near the top of the boundary layer (approximately 0.5–1 km). Recently, it was shown that in a few observed TCs, the wind speed within the eyewall can increase with height within the midtroposphere, resulting in a secondary local maximum at 4–5 km. This study presents additional evidence of such an atypical structure, using dropsonde and Doppler radar observations from Hurricane Patricia (2015). Near peak intensity, Patricia exhibited an absolute wind speed maximum at 5–6-km height, along with a weaker boundary layer maximum. Idealized simulations and a diagnostic boundary layer model are used to investigate the dynamics that result in these atypical wind profiles, which only occur in TCs that are very intense (surface wind speed > 50 m s−1) and/or very small (radius of maximum winds < 20 km). The existence of multiple maxima in wind speed is a consequence of an inertial oscillation that is driven ultimately by surface friction. The vertical oscillation in the radial velocity results in a series of unbalanced tangential wind jets, whose magnitude and structure can manifest as a midlevel wind speed maximum. The wavelength of the inertial oscillation increases with vertical mixing length lin a turbulence parameterization, and no midlevel wind speed maximum occurs when lis large. Consistent with theory, the wavelength in the simulations scales with (2 K/ I)1/2, where K is the (vertical) turbulent diffusivity, and I2is the inertial stability. This scaling is used to explain why only small and/or strong TCs exhibit midlevel wind speed maxima.

     
    more » « less