skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Capacity of Leaky Private Information Retrieval
Private information retrieval (PIR) allows users to retrieve data from databases without revealing the identity of that data. An extensive body of works has investigated efficient schemes to achieve computational and information-theoretic privacy. The latter guarantees that no information is revealed to the databases, irrespective of their computational power. Although information-theoretic PIR (IT-PIR) provides a strong privacy guarantee, it can be too taxing for certain applications. In this paper, we initiate the study of leaky private information retrieval (L-PIR), where a bounded amount of privacy leakage is allowed and measured through a parameter ε. The classical IT-PIR formulation is obtained by setting ε = 0, and for ε > 0, we explore the opportunities offered for reducing the download cost. We derive new upper and lower bounds on the download cost of L-PIR for any arbitrary ε, any number of messages K, and for N = 2 databases.  more » « less
Award ID(s):
1651492 1715947
PAR ID:
10132717
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2019 IEEE International Symposium on Information Theory (ISIT)
Page Range / eLocation ID:
1262 to 1266
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Private information retrieval (PIR) allows a user to retrieve a desired message out of K possible messages from N databases (DBs) without revealing the identity of the desired message. In this work, we consider the problem of PIR from uncoded storage constrained DBs. Each DB has a storage capacity of μKL bits, where L is the size of each message in bits, and μ ∈ [1/N, 1] is the normalized storage. In the storage constrained PIR problem, there are two key challenges: a) construction of communication efficient schemes through storage content design at each DB that allow download efficient PIR; and b characterizing the optimal download cost via information-theoretic lower bounds. The novel aspect of this work is to characterize the optimum download cost of PIR with storage constrained DBs for any value of storage. In particular, for any (N, K), we show that the optimal tradeoff between storage (μ) and the download cost (D(μ)) is given by the lower convex hull of the pairs ([t/N](1+[1/t]+[1/(t 2 )]+...+[1/(t K-1 )])) for t = 1,2, ..., N. The main contribution of this paper is the converse proof, i.e., obtaining lower bounds on the download cost for PIR as a function of the available storage. 
    more » « less
  2. Private information retrieval (PIR) allows a user to retrieve a desired message out of K possible messages from N databases without revealing the identity of the desired message. There has been significant recent progress on understanding fundamental information-theoretic limits of PIR, and in particular the download cost of PIR for several variations. Majority of existing works however, assume the presence of replicated databases, each storing all the K messages. In this work, we consider the problem of PIR from storage constrained databases. Each database has a storage capacity of μKL bits, where K is the number of messages, L is the size of each message in bits, and μ ∈ [1/N, 1] is the normalized storage. In the storage constrained PIR problem, there are two key design questions: a) how to store content across each database under storage constraints; and b) construction of schemes that allow efficient PIR through storage constrained databases. The main contribution of this work is a general achievable scheme for PIR from storage constrained databases for any value of storage. In particular, for any (N, K), with normalized storage μ = t/N, where the parameter t can take integer values t ∈ {1, 2, ..., N}, we show that our proposed PIR scheme achieves a download cost of (1 + 1/t + 1/2 + ⋯ + 1/t K-1 ). The extreme case when μ = 1 (i.e., t = N) corresponds to the setting of replicated databases with full storage. For this extremal setting, our scheme recovers the information-theoretically optimal download cost characterized by Sun and Jafar as (1 + 1/N + ⋯ +1/N K-1 ). For the other extreme, when μ = 1/N (i.e., t = 1), the proposed scheme achieves a download cost of K. The most interesting aspect of the result is that for intermediate values of storage, i.e., 1/N <; μ <; 1, the proposed scheme can strictly outperform memory-sharing between extreme values of storage. 
    more » « less
  3. We show that it is possible to achieve information theoretic location privacy for secondary users (SUs) in database-driven cognitive radio networks (CRNs) with an end-to-end delay less than a second, which is significantly better than that of the existing alternatives offering only a computational privacy. This is achieved based on a keen observation that, by the requirement of Federal Communications Commission (FCC), all certified spectrum databases synchronize their records. Hence, the same copy of spectrum database is available through multiple (distinct) providers. We harness the synergy between multi-server private information retrieval (PIR) and database-driven CRN architecture to offer an optimal level of privacy with high efficiency by exploiting this observation. We demonstrated, analytically and experimentally with deployments on actual cloud systems that, our adaptations of multi-server PIR outperform that of the (currently) fastest single-server PIR by a magnitude of times with information-theoretic security, collusion resiliency, and fault-tolerance features. Our analysis indicates that multi-server PIR is an ideal cryptographic tool to provide location privacy in database-driven CRNs, in which the requirement of replicated databases is a natural part of the system architecture, and therefore SUs can enjoy all advantages of multi-server PIR without any additional architectural and deployment costs. 
    more » « less
  4. null (Ed.)
    We consider the private information retrieval (PIR) problem from decentralized uncoded caching databases. There are two phases in our problem setting, a caching phase, and a retrieval phase. In the caching phase, a data center containing all the K files, where each file is of size L bits, and several databases with storage size constraint μ K L bits exist in the system. Each database independently chooses μ K L bits out of the total K L bits from the data center to cache through the same probability distribution in a decentralized manner. In the retrieval phase, a user (retriever) accesses N databases in addition to the data center, and wishes to retrieve a desired file privately. We characterize the optimal normalized download cost to be D * = ∑ n = 1 N + 1 N n - 1 μ n - 1 ( 1 - μ ) N + 1 - n 1 + 1 n + ⋯ + 1 n K - 1 . We show that uniform and random caching scheme which is originally proposed for decentralized coded caching by Maddah-Ali and Niesen, along with Sun and Jafar retrieval scheme which is originally proposed for PIR from replicated databases surprisingly results in the lowest normalized download cost. This is the decentralized counterpart of the recent result of Attia, Kumar, and Tandon for the centralized case. The converse proof contains several ingredients such as interference lower bound, induction lemma, replacing queries and answering string random variables with the content of distributed databases, the nature of decentralized uncoded caching databases, and bit marginalization of joint caching distributions. 
    more » « less
  5. We study the problem of weakly private information retrieval (PIR) when there is heterogeneity in servers’ trustfulness under the maximal leakage (Max-L) metric. A user wishes to retrieve a desired message from N non-colluding servers efficiently, such that the identity of the desired message is not leaked in a significant manner; however, some servers can be more trustworthy than others. We propose a code construction for this setting and optimize the probability distribution for this construction. It is shown that the optimal probability allocation for the proposed scheme essentially separates the delivery patterns into two parts: a completely private part that has the same download overhead as the capacity-achieving PIR code, and a non-private part that allows complete privacy leakage but has no download overhead by downloading only from the most trustful server. The optimal solution is established through a sophisticated analysis of the underlying convex optimization problem, and a reduction between the homogeneous setting and the heterogeneous setting. 
    more » « less