This study develops and optimizes a new protocol to measure lithium isotope ratios using a single collector quadrupole inductively coupled plasma mass spectrometer (Q-ICP-MS) operated under hot plasma (1550 W) conditions with a sample–standard bracketing method. Our Q-ICP-MS method reduces sample consumption to 2.5 ng of Li and achieves a high long-term precision of 1.1‰ (2SD). This Q-ICP-MS method exhibits high matrix tolerance (Na/Li < 100), suitable for ng-sized and high-matrix geological samples. We also developed a dual-column system for Li separation, with large loading capacity (29.6 meq), complete recovery (∼100%) and satisfactory purification (Na/Li m m −1 < 1), as well as a fixed elution range for Li fractions (28–60 mL). This new chromatography method has been applied to chemically diverse materials, producing consistent results. In addition, we report the Li isotope compositions of 13 geostandards, and our measurements agree well with reported data within analytical uncertainties. This study documents that Li element concentration and Li isotope composition can be routinely measured using a single collector ICP-MS, which is convenient and commercially affordable for future Li isotope research across the fields of Earth and Environmental Sciences.
more »
« less
Quantification of 71 detected elements from Li to U for aqueous samples by simultaneous-inductively coupled plasma-mass spectrometry
Quantitative analysis of multi-element concentrations in aqueous solutions, such as water, beverages and biofluids, has long been performed by sequential inductively coupled plasma-mass spectrometry. Recently, a fully simultaneous mass spectrum monitoring ICP-MS instrument that fits a compact Mattauch–Herzog geometry (MH-ICP-MS) with a permanent magnet and a large, spatially resolving semiconductor ion detector has been introduced. This technology allows coverage of the complete inorganic relevant mass range from 6 Li to 238 U in a single measurement, which helps to mitigate the restriction on the number of inorganic elements whose concentrations may be routinely measured from one sample, thus reducing operational assay times and aqueous sample volumes for evaluations across the breadth of the periodic table. We report here on a detailed method for utilizing MH-ICP-MS to detect all elements of the relevant inorganic spectrum in aqueous samples; 7 types of water, 4 types of beverage, and 4 biofluid biological samples. With this method 71 elements can be routinely detected simultaneously in seconds and in as little as 1–4 mL sample, when using a specific set of calibration and internal standards. Quantitative results reveal distinct element patterns between each sample and within types of samples, suggesting that different types of aqueous solutions can be recognized and distinguished by their elemental patterns. The method has implications for understanding elemental distribution and concentration for many fields, including nutrition, studies of the biosphere, ecological stoichiometry, and environmental health fields, among others, where broad elemental information is actually required.
more »
« less
- Award ID(s):
- 1644681
- PAR ID:
- 10132874
- Date Published:
- Journal Name:
- RSC Advances
- Volume:
- 8
- Issue:
- 65
- ISSN:
- 2046-2069
- Page Range / eLocation ID:
- 37008 to 37020
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Sanitary sewer overflows (SSOs) are a common problem across the United States. An estimated number of 23 000–75 000 SSOs occurred in 2004, discharging between 11 and 38 billion liters of untreated wastewater to receiving waters. SSOs release many contaminants, including engineered nanomaterials (ENMs), to receiving water bodies. Measuring ENM concentrations in environmental samples remains a key challenge in environmental nanotechnology and requires the distinction between natural and engineered particles. This distinction between natural and engineered particles is often hampered by the similarities in the intrinsic properties of natural and engineered particles, such as particle size, composition, density, and surface chemistry, and by the limitations of the available nanometrology tools. To overcome these challenges, we applied a multi-method approach to measure the concentrations and properties of TiO 2 engineered particles ( e.g. , ENMs and pigments) including: 1) multi element-single particle-inductively coupled plasma-mass spectrometry (ME-SP-ICP-MS) to identify elemental associations and to determine elemental ratios in natural particles, 2) calculation of total elemental concentrations and ratios from total metal concentrations measured following total sample digestion to estimate engineered particle concentrations, and 3) transmission electron microscopy (TEM) to characterize engineered particle size and morphology. ME-SP-ICP-MS analysis revealed that natural TiO 2 particles are often associated with at least one of the following elements: Al, Fe, Ce, Si, La, Zr, Nb, Pb, Ba, Th, Ta, W and U, and that elemental ratios of Ti to these elements, except Pb, are typical of riverine particulates and the average crustal ratios. High TiO 2 engineered particle concentrations up to 100 μg L −1 were found in SSO-impacted surface waters. TEM analysis demonstrated the presence of regular-shape TiO 2 particles in SSO-impacted surface waters. This study provides a comprehensive approach for measuring TiO 2 engineered particle concentrations in surface waters. The quantitative data produced in this work can be used as input for modeling studies and pave the way for routine monitoring of ENMs in environmental systems, validation of ENM fate models, and more accurate ENM exposure and risk assessment.more » « less
-
Concentrations of nutrients and contaminants in rice grain affect human health, specifically through the localization and chemical form of elements. Methods to spatially quantify the concentration and speciation of elements are needed to protect human health and characterize elemental homeostasis in plants. Here, an evaluation was carried out using quantitative synchrotron radiation microprobe X-ray fluorescence (SR-µXRF) imaging by comparing average rice grain concentrations of As, Cu, K, Mn, P, S and Zn measured with rice grain concentrations from acid digestion and ICP-MS analysis for 50 grain samples. Better agreement was found between the two methods for high-Zelements. Regression fits between the two methods allowed quantitative concentration maps of the measured elements. These maps revealed that most elements were concentrated in the bran, although S and Zn permeated into the endosperm. Arsenic was highest in the ovular vascular trace (OVT), with concentrations approaching 100 mg kg−1in the OVT of a grain from a rice plant grown in As-contaminated soil. Quantitative SR-µXRF is a useful approach for comparison across multiple studies but requires careful consideration of sample preparation and beamline characteristics.more » « less
-
Major and trace element geochemistry of lower Pliocene marine sediment core samples collected at International Ocean Discovery Program Site U1532 in the Amundsen Sea via ICP-MS. Bulk samples of mud or sandy mud were analyzed to assess sediment provenance using elemental ratios. The geochemical data were collected and analyzed by Ronald Leon and Sandra Passchier, assisted by Jessica Scheinbaum in sample preparations, and Xiaona Li in the ICP-MS analytical work.more » « less
-
Wisser, R J (Ed.)Abstract Ionomics measures elemental concentrations in biological organisms and provides a snapshot of physiology under different conditions. In this study, we evaluate genetic variation of the ionome in outbred, perennial switchgrass in three environments across the species’ native range, and explore patterns of genotype-by-environment interactions. We grew 725 clonally replicated genotypes of a large full sib family from a four-way linkage mapping population, created from deeply diverged upland and lowland switchgrass ecotypes, at three common gardens. Concentrations of 18 mineral elements were determined in whole post-anthesis tillers using ion coupled plasma mass spectrometry (ICP-MS). These measurements were used to identify quantitative trait loci (QTL) with and without QTL-by-environment interactions (QTLxE) using a multi-environment QTL mapping approach. We found that element concentrations varied significantly both within and between switchgrass ecotypes, and GxE was present at both the trait and QTL level. Concentrations of 14 of the 18 elements were under some genetic control, and 77 QTL were detected for these elements. Seventy-four percent of QTL colocalized multiple elements, half of QTL exhibited significant QTLxE, and roughly equal numbers of QTL had significant differences in magnitude and sign of their effects across environments. The switchgrass ionome is under moderate genetic control and by loci with highly variable effects across environments.more » « less
An official website of the United States government

