skip to main content


Title: Optimization of lithium isotope analysis in geological materials by quadrupole ICP-MS
This study develops and optimizes a new protocol to measure lithium isotope ratios using a single collector quadrupole inductively coupled plasma mass spectrometer (Q-ICP-MS) operated under hot plasma (1550 W) conditions with a sample–standard bracketing method. Our Q-ICP-MS method reduces sample consumption to 2.5 ng of Li and achieves a high long-term precision of 1.1‰ (2SD). This Q-ICP-MS method exhibits high matrix tolerance (Na/Li < 100), suitable for ng-sized and high-matrix geological samples. We also developed a dual-column system for Li separation, with large loading capacity (29.6 meq), complete recovery (∼100%) and satisfactory purification (Na/Li m m −1 < 1), as well as a fixed elution range for Li fractions (28–60 mL). This new chromatography method has been applied to chemically diverse materials, producing consistent results. In addition, we report the Li isotope compositions of 13 geostandards, and our measurements agree well with reported data within analytical uncertainties. This study documents that Li element concentration and Li isotope composition can be routinely measured using a single collector ICP-MS, which is convenient and commercially affordable for future Li isotope research across the fields of Earth and Environmental Sciences.  more » « less
Award ID(s):
1848153
NSF-PAR ID:
10139160
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Analytical Atomic Spectrometry
Volume:
34
Issue:
8
ISSN:
0267-9477
Page Range / eLocation ID:
1708 to 1717
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stable potassium (K) isotopes (41K/39K) have shown great promise as novel chemical tracers for a wide range of bio-, geo-, and cosmo-chemical processes, but high precision stable K isotope analysis remains a challenge for plasma source mass spectrometry due to intense argon-related interferences produced directly from argon plasma. Here we provide an assessment on the analytical figures of merit of a new generation collision-cell equipped multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS), Sapphire from Nu Instruments, for K isotope analysis based on our extensive tests over a duration of ~8 months. Because use of helium and hydrogen as collision/reaction gases can reduce argon-related interferences to negligible levels at optimal flow rates, the collision-cell mode can operate at low mass resolution during K isotope analysis, providing >2 orders of magnitude higher K sensitivity (>1000 V per μg mL-1 K), as compared to the widely used “cold plasma” method, and the capability for direct 40K measurement. One challenge of the collision/reaction cell analysis on Sapphire is its higher susceptibility to matrix effects, requiring effective sample purification prior to analysis. Also, the collision-cell mode on Sapphire shows a pronounced effect associated with concentration (or ion intensity) mismatch between the sample and the bracketing standard during analysis, and this effect may not be fully eliminated through conventional concentration matching practice. Instead, we developed a correction method for this concentration/ion intensity mismatch effect. Our method reduces the burden to the operator and increases sample throughput. This method allows for accurate K isotope analysis with an intermediate precision of ≤0.05 ‰ (2SD) to be routinely achieved using the collision cell on Sapphire, representing a major advance to stable K isotope analysis. 
    more » « less
  2. Detrital zircon (DZ) U‐Pb laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) has revolutionised the way geologists approach many Earth science questions. Although recent research has focused on rapid sample throughput, acquisition rates are limited to 100–300 analyses h−1. We present a method to acquire zircon U‐Pb dates at rates of 120, 300, 600 and 1200 analyses h−1(30, 12, 6 and 3 s per analysis) by multi‐collector LA‐ICP‐MS. We demonstrate the efficacy of this method by analysing twelve zircon reference materials with dates from ~ 3465 to ~ 28 Ma. Mean offset from high‐precision dates increases with faster rates from 0.9% to 1.1%; mean random 1suncertainty increases from 0.6% to 1.3%. We tested this new method on a sandstone sample previously characterised by large‐nDZ geochronology. Quantitative comparison shows increased correspondence among age distributions comprising > 300 dates. This new method holds promise for DZ geochronology because (a) it requires no major changes to hardware, but rather modifications to software; (b) it yields robust age distributions well‐suited for quantitative analysis and maximum depositional age calculations; (c) there is only a minor sacrifice of accuracy and measurement uncertainty; and (d) there is less burden to researchers in terms of time investment and analytical cost.

     
    more » « less
  3. Tellurium (Te) stable isotope measurements have the potential to serve as tracers of Te mobility and redox conditions in modern and ancient environments. Here, we present a method to measure Te isotope ratios by MC-ICP-MS utilizing a hydride generation system to efficiently deliver Te to the plasma, in combination with a 120 Te– 124 Te double spike. This approach allows for precise δ 130 Te/ 126 Te (2 σ : 0.09‰) measurements while using less than 8.75 ng of natural Te. Although hydride generation methods usually produce higher sensitivity than more conventional methods, for Te, the sensitivity is similar, on our instrument, to that achieved using a desolvating nebulizer. Nonetheless, hydride generation has an advantageous ability to exclude interfering elements such as Ba and allow analysis of samples without chemical separation of Te in some cases. We also demonstrate successfully a modified ion exchange procedure to separate various matrix components and isobaric interferences from Te in natural sediments. Analyses of multiple digestions of USGS standard reference materials, mine tailings, ancient sediments, and soils utilizing this approach show the largest spread in terrestrial Te isotopic composition to date (δ 130 Te/ 126 Te ∼ 1.21‰) and a lack of detectable mass-independent fractionation. 
    more » « less
  4. Abstract

    Detrital zircon (DZ) U–Pb geochronology has improved the way geologists approach questions of sediment provenance and stratigraphic age. However, there is debate about what constitutes an appropriate sample size (i.e., the number of dates in a DZ sample,n), which depends on project objectives, sample complexity, and, critically, analytical budget. Additionally, there is ongoing concern about bias introduced by zircon grain size. We tested a recently developed rapid (3 s/analysis) data acquisition method by multicollector laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) that incorporates an automated selection routine and calculates two‐dimensional grain geometry from polished sample surfaces. Eleven samples were analysed from below and above the Late Cretaceous (Campanian) basal Castlegate unconformity of the Book Cliffs, Utah, in a down‐depositional‐dip transect including Price, Horse, Tusher, and Thompson canyons. 12,448 new concordant dates were generated during two measurement sessions. Results are consistent with recent studies suggesting there is no major provenance change and little time (1–2 Myr) represented across the unconformity. Grain size and sample size both exert a strong control on sample dissimilarity. Age distributions constructed from subsamples of large grains are systematically less similar to whole samples; age distributions composed of small grains are overall more similar to whole samples. As such, North American sediment sources that produce large grains such as the Grenville and Yavapi‐Mazatzal belts can bias age distributions if only large grains are analysed. A sample size ofn = 100 is inadequate for characterizing age distributions as complex as those of the Book Cliffs, whereas a sample size ofn = 300 provides good characterization. Sample size ofn ≈ 1000 or more is unnecessary unless project objectives include scanning for subordinate age groups, such as when identifying the youngest grains for calculating a maximum depositional age (MDA). Dates used in MDA calculations acquired with rapid acquisition are best re‐analysed with longer LA‐ICP‐MS acquisition methods or isotope dilution thermal ionization mass spectrometry for increased accuracy and precision. We include new MATLAB code and open‐source software programs,DZpickandDZmda, for automated spot picking and calculating MDAs.

     
    more » « less
  5. Quantitative analysis of multi-element concentrations in aqueous solutions, such as water, beverages and biofluids, has long been performed by sequential inductively coupled plasma-mass spectrometry. Recently, a fully simultaneous mass spectrum monitoring ICP-MS instrument that fits a compact Mattauch–Herzog geometry (MH-ICP-MS) with a permanent magnet and a large, spatially resolving semiconductor ion detector has been introduced. This technology allows coverage of the complete inorganic relevant mass range from 6 Li to 238 U in a single measurement, which helps to mitigate the restriction on the number of inorganic elements whose concentrations may be routinely measured from one sample, thus reducing operational assay times and aqueous sample volumes for evaluations across the breadth of the periodic table. We report here on a detailed method for utilizing MH-ICP-MS to detect all elements of the relevant inorganic spectrum in aqueous samples; 7 types of water, 4 types of beverage, and 4 biofluid biological samples. With this method 71 elements can be routinely detected simultaneously in seconds and in as little as 1–4 mL sample, when using a specific set of calibration and internal standards. Quantitative results reveal distinct element patterns between each sample and within types of samples, suggesting that different types of aqueous solutions can be recognized and distinguished by their elemental patterns. The method has implications for understanding elemental distribution and concentration for many fields, including nutrition, studies of the biosphere, ecological stoichiometry, and environmental health fields, among others, where broad elemental information is actually required. 
    more » « less