Multiple-objective optimization (MOO) aims to simultaneously optimize multiple conflicting objectives and has found important applications in machine learning, such as simultaneously minimizing classification and fairness losses. At an optimum, further optimizing one objective will necessarily increase at least another objective, and decision-makers need to comprehensively explore multiple optima to pin-point one final solution. We address the efficiency of exploring the Pareto front that contains all optima. First, stochastic multi-gradient descent (SMGD) takes time to converge to the Pareto front with large neural networks and datasets. Instead, we explore the Pareto front as a manifold from a few initial optima, based on a predictor-corrector method. Second, for each exploration step, the predictor iteratively solves a large-scale linear system that scales quadratically in the number of model parameters, and requires one backpropagation to evaluate a second-order Hessian-vector product per iteration of the solver. We propose a Gauss-Newton approximation that scales linearly, and that requires only first-order inner-product per iteration. T hird, we explore different linear system solvers, including the MINRES and conjugate gradient methods for approximately solving the linear systems. The innovations make predictor-corrector efficient for large networks and datasets. Experiments on a fair misinformation detection task show that 1) the predictor-corrector method can find Pareto fronts better than or similar to SMGD with less time, and 2) the proposed first-order method does not harm the quality of the Pareto front identified by the second-order method, while further reducing running time.
more »
« less
Overparameterized Nonlinear Learning: Gradient Descent Takes the Shortest Path?
Many modern learning tasks involve fitting nonlinear models which are trained in an overparameterized regime where the parameters of the model exceed the size of the training dataset. Due to this overparameterization, the training loss may have infinitely many global minima and it is critical to understand the properties of the solutions found by first-order optimization schemes such as (stochastic) gradient descent starting from different initializations. In this paper we demonstrate that when the loss has certain properties over a minimally small neighborhood of the initial point, first order methods such as (stochastic) gradient descent have a few intriguing properties: (1) the iterates converge at a geometric rate to a global optima even when the loss is nonconvex, (2) among all global optima of the loss the iterates converge to one with a near minimal distance to the initial point, (3) the iterates take a near direct route from the initial point to this global optimum. As part of our proof technique, we introduce a new potential function which captures the tradeoff between the loss function and the distance to the initial point as the iterations progress. The utility of our general theory is demonstrated for a variety of problem domains spanning low-rank matrix recovery to shallow neural network training.
more »
« less
- Award ID(s):
- 1846369
- PAR ID:
- 10132890
- Date Published:
- Journal Name:
- International Conference on Machine Learning
- Volume:
- 97
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In machine learning, stochastic gradient descent (SGD) is widely deployed to train models using highly non-convex objectives with equally complex noise models. Unfortunately, SGD theory often makes restrictive assumptions that fail to capture the non-convexity of real problems, and almost entirely ignore the complex noise models that exist in practice. In this work, we demonstrate the restrictiveness of these assumptions using three canonical models in machine learning. Then, we develop novel theory to address this shortcoming in two ways. First, we establish that SGD’s iterates will either globally converge to a stationary point or diverge under nearly arbitrary nonconvexity and noise models. Under a slightly more restrictive assumption on the joint behavior of the non-convexity and noise model that generalizes current assumptions in the literature, we show that the objective function cannot diverge, even if the iterates diverge. As a consequence of our results, SGD can be applied to a greater range of stochastic optimization problems with confidence about its global convergence behavior and stability.more » « less
-
Abstract Loss functions with a large number of saddle points are one of the major obstacles for training modern machine learning (ML) models efficiently. First-order methods such as gradient descent (GD) are usually the methods of choice for training ML models. However, these methods converge to saddle points for certain choices of initial guesses. In this paper, we propose a modification of the recently proposed Laplacian smoothing gradient descent (LSGD) [Osher et al., arXiv:1806.06317 ], called modified LSGD (mLSGD), and demonstrate its potential to avoid saddle points without sacrificing the convergence rate. Our analysis is based on the attraction region, formed by all starting points for which the considered numerical scheme converges to a saddle point. We investigate the attraction region’s dimension both analytically and numerically. For a canonical class of quadratic functions, we show that the dimension of the attraction region for mLSGD is $$\lfloor (n-1)/2\rfloor$$ , and hence it is significantly smaller than that of GD whose dimension is $n-1$ .more » « less
-
Traditional analyses of gradient descent show that when the largest eigenvalue of the Hessian, also known as the sharpness S(θ), is bounded by 2/η, training is "stable" and the training loss decreases monotonically. Recent works, however, have observed that this assumption does not hold when training modern neural networks with full batch or large batch gradient descent. Most recently, Cohen et al. (2021) observed two important phenomena. The first, dubbed progressive sharpening, is that the sharpness steadily increases throughout training until it reaches the instability cutoff 2/η. The second, dubbed edge of stability, is that the sharpness hovers at 2/η for the remainder of training while the loss continues decreasing, albeit non-monotonically. We demonstrate that, far from being chaotic, the dynamics of gradient descent at the edge of stability can be captured by a cubic Taylor expansion: as the iterates diverge in direction of the top eigenvector of the Hessian due to instability, the cubic term in the local Taylor expansion of the loss function causes the curvature to decrease until stability is restored. This property, which we call self-stabilization, is a general property of gradient descent and explains its behavior at the edge of stability. A key consequence of self-stabilization is that gradient descent at the edge of stability implicitly follows projected gradient descent (PGD) under the constraint S(θ)≤2/η. Our analysis provides precise predictions for the loss, sharpness, and deviation from the PGD trajectory throughout training, which we verify both empirically in a number of standard settings and theoretically under mild conditions. Our analysis uncovers the mechanism for gradient descent's implicit bias towards stability.more » « less
-
Modern neural networks are often quite wide, causing large memory and computation costs. It is thus of great interest to train a narrower network. However, training narrow neural nets remains a challenging task. We ask two theoretical questions: Can narrow networks have as strong expressivity as wide ones? If so, does the loss function exhibit a benign optimization landscape? In this work, we provide partially affirmative answers to both questions for 1-hidden-layer networks with fewer than n (sample size) neurons when the activation is smooth. First, we prove that as long as the width m>=2n=d (where d is the input dimension), its expressivity is strong, i.e., there exists at least one global minimizer with zero training loss. Second, we identify a nice local region with no local-min or saddle points. Nevertheless, it is not clear whether gradient descent can stay in this nice region. Third, we consider a constrained optimization formulation where the feasible region is the nice local region, and prove that every KKT point is a nearly global minimizer. It is expected that projected gradient methods converge to KKT points under mild technical conditions, but we leave the rigorous convergence analysis to future work. Thorough numerical results show that projected gradient methods on this constrained formulation significantly outperform SGD for training narrow neural nets.more » « less
An official website of the United States government

