skip to main content


Title: Gradient Descent with Early Stopping is Provably Robust to Label Noise for Overparameterized Neural Networks
Modern neural networks are typically trained in an over-parameterized regime where the parameters of the model far exceed the size of the training data. Due to over-parameterization these neural networks in principle have the capacity to (over)fit any set of labels including pure noise. Despite this high fitting capacity, somewhat paradoxically, neural network models trained via first-order methods continue to predict well on yet unseen test data. In this paper we take a step towards demystifying this phenomena. In particular we show that first order methods such as gradient descent are provably robust to noise/corruption on a constant fraction of the labels despite over-parametrization under a rich dataset model. In particular: i) First, we show that in the first few iterations where the updates are still in the vicinity of the initialization these algorithms only fit to the correct labels essentially ignoring the noisy labels. ii) Secondly, we prove that to start to overfit to the noisy labels these algorithms must stray rather far from from the initial model which can only occur after many more iterations. Together, these show that gradient descent with early stopping is provably robust to label noise and shed light on empirical robustness of deep networks as well as commonly adopted heuristics to prevent overfitting.  more » « less
Award ID(s):
1846369
NSF-PAR ID:
10132893
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The 23rd International Conference on Artificial Intelligence and Statistics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Convolutional Neural Networks (CNNs) have emerged as highly successful tools for image generation, recovery, and restoration. A major contributing factor to this success is that convolutional networks impose strong prior assumptions about natural images. A surprising experiment that highlights this architectural bias towards natural images is that one can remove noise and corruptions from a natural image without using any training data, by simply fitting (via gradient descent) a randomly initialized, over-parameterized convolutional generator to the corrupted image. While this over-parameterized network can fit the corrupted image perfectly, surprisingly after a few iterations of gradient descent it generates an almost uncorrupted image. This intriguing phenomenon enables state-of-the-art CNN-based denoising and regularization of other inverse problems. In this paper, we attribute this effect to a particular architectural choice of convolutional networks, namely convolutions with fixed interpolating filters. We then formally characterize the dynamics of fitting a two-layer convolutional generator to a noisy signal and prove that early-stopped gradient descent denoises/regularizes. Our proof relies on showing that convolutional generators fit the structured part of an image significantly faster than the corrupted portion. 
    more » « less
  2. Convolutional Neural Networks (CNNs) have emerged as highly successful tools for image generation, recovery, and restoration. This success is often attributed to large amounts of training data. However, recent experimental findings challenge this view and instead suggest that a major contributing factor to this success is that convolutional networks impose strong prior assumptions about natural images. A surprising experiment that highlights this architectural bias towards natural images is that one can remove noise and corruptions from a natural image without using any training data, by simply fitting (via gradient descent) a randomly initialized, over-parameterized convolutional generator to the single corrupted image. While this over-parameterized network can fit the corrupted image perfectly, surprisingly after a few iterations of gradient descent one obtains the uncorrupted image. This intriguing phenomena enables state-of-the-art CNN-based denoising and regularization of linear inverse problems such as compressive sensing. In this paper we take a step towards demystifying this experimental phenomena by attributing this effect to particular architectural choices of convolutional networks, namely convolutions with fixed interpolating filters. We then formally characterize the dynamics of fitting a two layer convolutional generator to a noisy signal and prove that earlystopped gradient descent denoises/regularizes. This results relies on showing that convolutional generators fit the structured part of an image significantly faster than the corrupted portion 
    more » « less
  3. Modern neural networks have the capacity to overfit noisy labels frequently found in real-world datasets. Although great progress has been made, existing techniques are limited in providing theoretical guarantees for the performance of the neural networks trained with noisy labels. Here we propose a novel approach with strong theoretical guarantees for robust training of deep networks trained with noisy labels. The key idea behind our method is to select weighted subsets (coresets) of clean data points that provide an approximately low-rank Jacobian matrix. We then prove that gradient descent applied to the subsets do not overfit the noisy labels. Our extensive experiments corroborate our theory and demonstrate that deep networks trained on our subsets achieve a significantly superior performance compared to state-of-the art, e.g., 6% increase in accuracy on CIFAR-10 with 80% noisy labels, and 7% increase in accuracy on mini Webvision. 
    more » « less
  4. null (Ed.)
    Several works have aimed to explain why overparameterized neural networks generalize well when trained by Stochastic Gradient Descent (SGD). The consensus explanation that has emerged credits the randomized nature of SGD for the bias of the training process towards low-complexity models and, thus, for implicit regularization. We take a careful look at this explanation in the context of image classification with common deep neural network architectures. We find that if we do not regularize explicitly, then SGD can be easily made to converge to poorly-generalizing, high-complexity models: all it takes is to first train on a random labeling on the data, before switching to properly training with the correct labels. In contrast, we find that in the presence of explicit regularization, pretraining with random labels has no detrimental effect on SGD. We believe that our results give evidence that explicit regularization plays a far more important role in the success of overparameterized neural networks than what has been understood until now. Specifically, by penalizing complicated models independently of their fit to the data, regularization affects training dynamics also far away from optima, making simple models that fit the data well discoverable by local methods, such as SGD. 
    more » « less
  5. Remarkable recent success of deep neural networks has not been easy to analyze theoretically. It has been particularly hard to disentangle relative significance of architecture and optimization in achieving accurate classification on large datasets. On the flip side, shallow methods (such as kernel methods) have encountered obstacles in scaling to large data, despite excellent performance on smaller datasets, and extensive theoretical analysis. Practical methods, such as variants of gradient descent used so successfully in deep learning, seem to perform below par when applied to kernel methods. This difficulty has sometimes been attributed to the limitations of shallow architecture. In this paper we identify a basic limitation in gradient descent-based optimization methods when used in conjunctions with smooth kernels. Our analysis demonstrates that only a vanishingly small fraction of the function space is reachable after a polynomial number of gradient descent iterations. That drastically limits the approximating power of gradient descent leading to over-regularization. The issue is purely algorithmic, persisting even in the limit of infinite data. To address this shortcoming in practice, we introduce EigenPro iteration, a simple and direct preconditioning scheme using a small number of approximately computed eigenvectors. It can also be viewed as learning a kernel optimized for gradient descent. Injecting this small, computationally inexpensive and SGD-compatible, amount of approximate second-order information leads to major improvements in convergence. For large data, this leads to a significant performance boost over the state-of-the-art kernel methods. In particular, we are able to match or improve the results reported in the literature at a small fraction of their computational budget. 
    more » « less