Modern neural networks are typically trained in an over-parameterized regime where the parameters of the model far exceed the size of the training data. Due to over-parameterization these neural networks in principle have the capacity to (over)fit any set of labels including pure noise. Despite this high fitting capacity, somewhat paradoxically, neural network models trained via first-order methods continue to predict well on yet unseen test data. In this paper we take a step towards demystifying this phenomena. In particular we show that first order methods such as gradient descent are provably robust to noise/corruption on a constant fraction of the labels despite over-parametrization under a rich dataset model. In particular: i) First, we show that in the first few iterations where the updates are still in the vicinity of the initialization these algorithms only fit to the correct labels essentially ignoring the noisy labels. ii) Secondly, we prove that to start to overfit to the noisy labels these algorithms must stray rather far from from the initial model which can only occur after many more iterations. Together, these show that gradient descent with early stopping is provably robust to label noise and shed light on empirical robustness of deep networks as well as commonly adopted heuristics to prevent overfitting.
more »
« less
Bad Global Minima Exist and SGD Can Reach Them
Several works have aimed to explain why overparameterized neural networks generalize well when trained by Stochastic Gradient Descent (SGD). The consensus explanation that has emerged credits the randomized nature of SGD for the bias of the training process towards low-complexity models and, thus, for implicit regularization. We take a careful look at this explanation in the context of image classification with common deep neural network architectures. We find that if we do not regularize explicitly, then SGD can be easily made to converge to poorly-generalizing, high-complexity models: all it takes is to first train on a random labeling on the data, before switching to properly training with the correct labels. In contrast, we find that in the presence of explicit regularization, pretraining with random labels has no detrimental effect on SGD. We believe that our results give evidence that explicit regularization plays a far more important role in the success of overparameterized neural networks than what has been understood until now. Specifically, by penalizing complicated models independently of their fit to the data, regularization affects training dynamics also far away from optima, making simple models that fit the data well discoverable by local methods, such as SGD.
more »
« less
- Award ID(s):
- 1844951
- PAR ID:
- 10227030
- Date Published:
- Journal Name:
- Advances in neural information processing systems
- ISSN:
- 1049-5258
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
It was always obvious that SGD with small minibatch size yields for neural networks much higher asymptotic fluctuations in the updates of the weight matrices than GD. It has also been often reported that SGD in deep RELU networks shows empirically a low-rank bias in the weight matrices. A recent theoretical analysis derived a bound on the rank and linked it to the size of the SGD fluctuations [25]. In this paper, we provide an empirical and theoretical analysis of the convergence of SGD vs GD, first for deep RELU networks and then for the case of linear regression, where sharper estimates can be obtained and which is of independent interest. In the linear case, we prove that the component $$W^\perp$$ of the matrix $$W$$ corresponding to the null space of the data matrix $$X$$ converges to zero for both SGD and GD, provided the regularization term is non-zero. Because of the larger number of updates required to go through all the training data, the convergence rate {\it per epoch} of these components is much faster for SGD than for GD. In practice, SGD has a much stronger bias than GD towards solutions for weight matrices $$W$$ with high fluctuations -- even when the choice of mini batches is deterministic -- and low rank, provided the initialization is from a random matrix. Thus SGD with non-zero regularization, shows the coupled phenomenon of asymptotic noise and a low-rank bias-- unlike GD.more » « less
-
The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting, that is, accurate predictions despite overfitting training data. In this article, we survey recent progress in statistical learning theory that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behaviour of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favourable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.more » « less
-
The risk of overparameterized models, in particular deep neural networks, is often double- descent shaped as a function of the model size. Recently, it was shown that the risk as a function of the early-stopping time can also be double-descent shaped, and this behavior can be explained as a super-position of bias-variance tradeoffs. In this paper, we show that the risk of explicit L2-regularized models can exhibit double descent behavior as a function of the regularization strength, both in theory and practice. We find that for linear regression, a double descent shaped risk is caused by a superposition of bias-variance tradeoffs corresponding to different parts of the model and can be mitigated by scaling the regularization strength of each part appropriately. Motivated by this result, we study a two-layer neural network and show that double descent can be eliminated by adjusting the regularization strengths for the first and second layer. Lastly, we study a 5-layer CNN and ResNet-18 trained on CIFAR-10 with label noise, and CIFAR-100 without label noise, and demonstrate that all exhibit double descent behavior as a function of the regularization strength.more » « less
-
There has been significant recent interest in the use of deep learning for regularizing imaging inverse problems. Most work in the area has focused on regularization imposed implicitly by convolutional neural networks (CNNs) pre-trained for image reconstruction. In this work, we follow an alternative line of work based on learning explicit regularization functionals that promote preferred solutions. We develop the Explicit Learned Deep Equilibrium Regularizer (ELDER) method for learning explicit regularization functionals that minimize a mean-squared error (MSE) metric. ELDER is based on a regularization functional parameterized by a CNN and a deep equilibrium learning (DEQ) method for training the functional to be MSE-optimal at the fixed points of the reconstruction algorithm. The explicit regularizer enables ELDER to directly inherit fundamental convergence results from optimization theory. On the other hand, DEQ training enables ELDER to improve over existing explicit regularizers without prohibitive memory complexity during training. We use ELDER to train several approaches to parameterizing explicit regularizers and test their performance on three distinct imaging inverse problems. Our results show that ELDER can greatly improve the quality of explicit regularizers compared to existing methods, and show that learning explicit regularizers does not compromise performance relative to methods based on implicit regularization.more » « less
An official website of the United States government

