skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Global analysis of synchronization performance for power systems: bridging the theory-practice gap
The issue of synchronization in the power grid is receiving renewed attention, as new energy sources with different dynamics enter the picture. Global metrics have been proposed to evaluate performance, and analyzed under highly simplified assumptions. In this work we extend this approach to more realistic network scenarios, and more closely connect it with metrics used in power engineering practice. In particular, our analysis covers networks with generators of heterogeneous ratings and richer dynamic models of machines. Under a suitable proportionality assumption in the parameters, we show that the step response of bus frequencies can be decomposed in two components. The first component is a system-wide frequency that captures the aggregate grid behavior, and the residual component represents the individual bus frequency deviations from the aggregate. Using this decomposition, we define --and compute in closed form-- several metrics that capture dynamic behaviors that are of relevance for power engineers. In particular, using the system frequency, we define industry-style metrics (Nadir, RoCoF) that are evaluated through a representative machine. We further use the norm of the residual component to define a synchronization cost that can appropriately quantify inter-area oscillations. Finally, we employ robustness analysis tools to evaluate deviations from our proportionality assumption. We show that the system frequency still captures the grid steady-state deviation, and becomes an accurate reduced-order model of the grid as the network connectivity grows. Simulation studies with practically relevant data are included to validate the theory and further illustrate the impact of network structure and parameters on synchronization. Our analysis gives conclusions of practical interest, sometimes challenging the conventional wisdom in the field.  more » « less
Award ID(s):
1752362 1711188 1736448
PAR ID:
10132906
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Transactions on Automatic Control
ISSN:
0018-9286
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stiff dynamics continue to pose challenges for power system dynamic state estimation. In particular, models of inverters with control schemes designed to support grid voltage and frequency, namely, grid-forming inverters (GFMs), are highly prone to numerical instability. This paper develops a novel analytical modeling technique derived from two cascading subsystems, namely synchronization and dq-frame voltage control. This allows us to obtain a closed-form discrete-time state-space model based on the matrix exponential function. The resulting model enables a numerically stable and decentralized dynamic state estimator that can track the dynamics of GFMs at standard synchrophasor reporting rates. In contrast, existing dynamic state estimators are subject to numerical issues. The proposed algorithm is tested on a 14-bus power system with a GFM and compared with the standard algorithm whose process model is discretized using well-known Runge-Kutta methods. Numerical results demonstrate the superiority of the proposed method under various conditions. 
    more » « less
  2. In this work, we investigate grid-forming control for power systems containing three-phase and single-phase converters connected to unbalanced distribution and transmission networks, investigate self-balancing between single-phase converters, and propose a novel balancing feedback for grid-forming control that explicitly allows to trade-off unbalances in voltage and power. We develop a quasi-steady-state power network model that allows to analyze the interactions between three-phase and single-phase power converters across transmission, distribution, and standard transformer interconnections. We first investigate conditions under which this general network admits a well-posed kron-reduced quasi-steady-state network model. Our main contribution leverages this reduced-order model to develop analytical conditions for stability of the overall network with grid-forming three-phase and single-phase converters connected through standard transformer interconnections. Specifically, we provide conditions on the network topology under which (i) single-phase converters autonomously self-synchronize to a phase-balanced operating point and (ii) single-phase converters phase-balance through synchronization with three-phase converters. Moreover, we establish that the conditions can be relaxed if a phase-balancing feedback control is used. Finally, case studies combining detailed models of transmission systems (i.e., IEEE 9-bus) and distribution systems (i.e., IEEE 13-bus) are used to illustrate the results for (i) a power system containing a mix of transmission and distribution connected converters and, (ii) a power system solely using distribution-connected converters at the grid edge. 
    more » « less
  3. null (Ed.)
    This article presents the state-of-the-art application of a Unified Power Flow Controller (UPFC) to directly interface ocean wave energy converters (WEC) with the utility grid. It is shown that the transformer flux saturation problem at variable low-frequency operation poses no technical issue for the ocean power applications because a direct-proportionality relationship exists between frequency and amplitude of the WEC output voltages. We have proposed a direct interface of WEC with the utility grid using a series compensation transformer of the UPFC controller. The shunt input rectification segment of the UPFC acts not only as the DC bus for the UFPC operation but also as an embedded energy storage stage for the WEC. The mathematical formulation and simulation results are presented as a proof-of- concept for FACTS-based WEC-grid integration with the integrated energy storage capability. 
    more » « less
  4. This paper proposes a control scheme to force homogeneity for heterogenous network of the grid-forming (GFM) inverters in power electronics dominated grid (PEDG) to enable their aggregation and coherent dynamic interaction. Increased penetration of the renewable energy in distributed generation (DG) fashion is moving traditional power system to a highly disperse and complex heterogenous system i.e., PEDG with fleet of grid-forming and grid-following inverters. Optimal coordination, stability assessment, and situational awareness of PEDG is challenging due to numerous heterogenous inverters operating at the grid-edge that is outside the traditional utility centric power generation boundaries. Aggregation of these inverters will not be insightful due to their heterogenous characteristics. The proposed control scheme to force enclaved homogeneity (FEH) enables an insightful aggregation of GFM that can fully mimic the given physical system dynamics. The proposed FEH scheme enables coherent and homogenized dynamic interaction of GFM inverters that enhances the PEDG resiliency. Moreover, different cluster of GFM can be merged into single cluster with minimal synchronization time and frequency fluctuations. Accurate reference models can be achieved that enables effective dynamic assessment and optimal coordination which results in resilient PEDG. Several case studies provided to validate the effectiveness of proposed FEH in network of GFM. Then, GFMs aggregation and developed reference model for the PEDG system is validated via multiple comparative case studies. 
    more » « less
  5. This paper proposes a control scheme that prevents the adverse dynamic interactions between the heterogeneously controlled grid-forming inverters (GFMI) in power electronics dominated grid (PEDG) towards a resilient self-driving grid. The primary controller of GFMIs in a grid cluster can vary based on their manufacturers such as virtual synchronous generation, droop control, power synchronization control, etc. Therefore, this can introduce heterogeneity among the network of GFMIs in PEDG. Resultantly, during the interconnection of GFMIs that are based on heterogenous primary controller poses various synchronization and dynamic interaction challenges in PEDG. For instance, severe fluctuations in frequency and voltage, high ROCOF, unintended reactive power circulation that poses a threat on the overall transient stability of the PEDG. Therefore, to mitigate these adverse dynamic interactions among the heterogeneously controlled GFMIs, a force enclaved homogenization (FEH) control is proposed in a supervisory level controller. This will autonomously adjust inertia coefficients of the each GFMI to have homogenous transient response and will enforce coherency among the heterogenous DGs. This will prevent the PEDG from the adverse dynamic interactions during an interconnection and load disturbance. Various case studies are presented that validates the effectiveness of the proposed FEH control. 
    more » « less