skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The evolution of general intelligence in all animals and machines
Abstract We strongly agree that general intelligence occurs in many animals but find the cultural intelligence hypothesis of limited usefulness. Any viable hypothesis explaining the evolution of general intelligence should be able to account for it in all species where it is known to occur, and should also predict the conditions under which we can develop machines with general intelligence as well.  more » « less
Award ID(s):
1755089
PAR ID:
10132934
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Behavioral and Brain Sciences
Volume:
40
ISSN:
0140-525X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is a substantial and ever-growing corpus of evidence and literature exploring the impacts of Artificial intelligence (AI) technologies on society, politics, and humanity as a whole. A separate, parallel body of work has explored existential risks to humanity, including but not limited to that stemming from unaligned Artificial General Intelligence (AGI). In this paper, we problematise the notion that current and near-term artificial intelligence technologies have the potential to contribute to existential risk by acting as intermediate risk factors, and that this potential is not limited to the unaligned AGI scenario. We propose the hypothesis that certain already-documented effects of AI can act as existential risk factors, magnifying the likelihood of previously identified sources of existential risk. Moreover, future developments in the coming decade hold the potential to significantly exacerbate these risk factors, even in the absence of artificial general intelligence. Our main contribution is a (non-exhaustive) exposition of potential AI risk factors and the causal relationships between them, focusing on how AI can affect power dynamics and information security. This exposition demonstrates that there exist causal pathways from AI systems to existential risks that do not presuppose hypothetical future AI capabilities. 
    more » « less
  2. The field of artificial consciousness (AC) has largely developed outside of mainstream artificial intelligence (AI), with separate goals and criteria for success and with only a minimal exchange of ideas. This is unfortunate as the two fields appear to be synergistic. For example, here we consider the question of how concepts developed in AC research might contribute to more effective future AI systems. We first briefly discuss several past hypotheses about the function(s) of human consciousness, and present our own hypothesis that short-term working memory and very rapid learning should be a central concern in such matters. In this context, we then present ideas about how integrating concepts from AC into AI systems to develop an artificial conscious intelligence (ACI) could both produce more effective AI technology and contribute to a deeper scientific understanding of the fundamental nature of consciousness and intelligence. 
    more » « less
  3. Abstract Shewanella oneidensisMR‐1 is a promising chassis organism for microbial electrosynthesis because it has a well‐defined biochemical pathway (the Mtr pathway) that can connect extracellular electrodes to respiratory electron carriers inside the cell. We previously found that the Mtr pathway can be used to transfer electrons from a cathode to intracellular electron carriers and drive reduction reactions. In this work, we hypothesized that native NADH dehydrogenases form an essential link between the Mtr pathway and NADH in the cytoplasm. To test this hypothesis, we compared the ability of various mutant strains to accept electrons from a cathode and transfer them to an NADH‐dependent reaction in the cytoplasm, reduction of acetoin to 2,3‐butanediol. We found that deletion of genes encoding NADH dehydrogenases from the genome blocked electron transfer from a cathode to NADH in the cytoplasm, preventing the conversion of acetoin to 2,3‐butanediol. However, electron transfer to fumarate was not blocked by the gene deletions, indicating that NADH dehydrogenase deletion specifically impacted NADH generation and did not cause a general defect in extracellular electron transfer. Proton motive force (PMF) is linked to the function of the NADH dehydrogenases. We added a protonophore to collapse PMF and observed that it blocked inward electron transfer to acetoin but not fumarate. Together these results indicate a link between the Mtr pathway and intracellular NADH. Future work to optimize microbial electrosynthesis inS. oneidensisMR‐1 should focus on optimizing flux through NADH dehydrogenases. 
    more » « less
  4. Abstract The auditory scaffolding hypothesis states that early experience with sound underpins the development of domain-general sequence processing abilities, supported by studies observing impaired sequence processing in deaf or hard-of-hearing (DHH) children. To test this hypothesis, we administered a sequence processing task to 77 DHH children who use American Sign Language (ASL) and 23 hearing monolingual children aged 7–12 years and found no performance difference between them after controlling for age and nonverbal intelligence. Additionally, neither spoken language comprehension scores nor hearing loss levels predicted sequence processing scores in the DHH group, whereas ASL comprehension scores did. Our results do not indicate sequence processing deficits in DHH children and do not support the auditory scaffolding hypothesis; instead, these findings suggest that factors related to experience with and/or proficiency in an accessible language during development may be more important determinants of sequence processing abilities. 
    more » « less
  5. null (Ed.)
    We report a study examining the role of linguistic context in modulating the influences of individual differences in fluid and crystalized intelligence on comprehension of literary metaphors. Three conditions were compared: no context, metaphor-congruent context, and literal-congruent context. Relative to the baseline no-context condition, the metaphor-congruent context facilitated comprehension of the metaphorical meaning whereas the literal-congruent context impaired it. Measures of fluid and crystalized intelligence both made separable contributions to predicting metaphor comprehension. The metaphor-congruent context selectively increased the contribution of crystalized verbal intelligence. These findings support the hypothesis that a supportive linguistic context encourages use of semantic integration in interpreting metaphors. 
    more » « less