Modern data privacy regulations such as GDPR, CCPA, and CDPA stipulate that data pertaining to a user must be deleted without undue delay upon the user’s request. Existing systems are not designed to comply with these regulations and can leave traces of deleted data for indeterminate periods of time, often as long as months. We developed Lethe to address these problems by providing fine-grained secure deletion on any system and any storage medium, provided that Lethe has access to a fixed, small amount of securely-deletable storage. Lethe achieves this using keyed hash forests (KHFs), extensions of keyed hash trees (KHTs), structured to serve as efficient representations of encryption key hierarchies. By using a KHF as a regulator for data access, Lethe provides its secure deletion not by removing the KHF, but by adding a new KHF that only grants access to still-valid data. Access to the previous KHF is lost, and the data it regulated securely deleted, through the secure deletion of the single key that protected the previous KHF.
more »
« less
Exploring Untrusted Distributed Storage for High Performance Computing
High performance computing systems are typically built with high-throughput and infrastructural uniformity in mind, but generally do not easily accommodate diverse data security requirements on a single cluster. Rather than fracturing that infrastructure by building many network isolated storage "islands" to secure each dataset covered by an individual data use agreement, we explore using the Ceph distributed storage system with client-side encryption to provision secure storage from a single, untrusted data lake.
more »
« less
- Award ID(s):
- 1753840
- PAR ID:
- 10132949
- Date Published:
- Journal Name:
- PEARC '19: Proceedings of the Practice and Experience in Advanced Research Computing on Rise of the Machines (learning)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The need for secure and efficient communication between connected devices continues to grow in healthcare systems within smart cities. Secure communication of healthcare data in Internet of Things (IoT) systems is critical to ensure patient privacy and data integrity. Problems with healthcare communication, like data breaches, integrity issues, scalability issues, and cyber threats, make it harder for people to trust doctors, cause costs to rise, stop people from using new technology, and put private data at risk. So, this paper presents a blockchain-based hybrid method for sending secure healthcare data that combines IoT systems with blockchain technology and high-tech encryption techniques like elliptic curve cryptography (ECC). The proposed method uses the public key of a smart contract to encrypt private data to protect its privacy. It also uses cryptographic hashing and digital signatures to make sure that the data is correct and real. The framework stores metadata (e.g., hashes and signatures) on-chain, and large data uses off-chain storage like IPFS to reduce costs and improve scalability. It also incorporates a mechanism to authenticate IoT devices and enable secure communication across heterogeneous networks. Moreover, this work bridges gaps in existing solutions by providing an end-to-end secure communication system for healthcare applications. It provides strong data security and efficient storage for a reliable and scalable way to handle healthcare data safely in IoT ecosystems.more » « less
-
Poor-quality facial images pose challenges in biometric authentication, especially in passport photo acquisition and recognition. This study proposes a novel and open-source solution to address these issues by introducing a real-time facial image quality analysis utilizing computer vision technology on a low-power single-board computer. We present an open-source complete hardware solution that consists of a Jetson processor, a 16 MP autofocus RGB camera, a custom enclosure, and a touch sensor LCD for user interaction. To ensure the integrity and confidentiality of captured facial data, Advanced Encryption Standard (AES) is used for secure image storage. Using the pilot data collection, the system demonstrated its ability to capture high-quality images, achieving 98.98% accuracy in storing images of acceptable quality. This open-source, readily deployable, secure system offers promising potential for diverse real-time applications such as passport verification, security systems, etc.more » « less
-
Data security plays a crucial role in all areas of data transmission, processing, and storage. This paper considers security in eavesdropping attacks over wireless communication links in aeronautical telemetry systems. Data streams in these systems are often encrypted by traditional encryption algorithms such as the Advanced Encryption Standard (AES). Here, we propose a secure coding technique for the integrated Network Enhanced Telemetry (iNET) communications system that can be coupled with modern encryption schemes. We consider a wiretap scenario where there are two telemetry links between a test article (TA) and a legitimate receiver, or ground station (GS). We show how these two links can be used to transmit both encrypted and unencrypted data streams while keeping both streams secure. A single eavesdropper is assumed who can tap into both links through its noisy channel. Since our scheme does not require encryption of the unencrypted data stream, the proposed scheme offers the ability to reduce the size of the required secret key while keeping the transmitted data secure.more » « less
-
Flash memory has been used extensively as external storage of smartphones, tablets, IoT devices, laptops, etc. Therefore, more and more sensitive or even mission critical data are stored in flash and, once the data turn obsolete, securely deleting them is necessary for both regulation compliance and privacy protection. Traditional secure deletion on flash memory mainly focuses on sanitizing data. However, unique nature of flash memory may cause various data ``remnants'' and, even though the data are removed, the remnants may be utilized by the adversary to recover the deleted data, compromising the secure deletion guarantee. Based on both theoretic analysis and experiments using real-world workloads, we have identified one common type of remnants in the flash memory, namely duplicates, which are caused by unique internal functions of flash storage media including garbage collection, wear leveling, bad block management. We propose RedFlash, a novel secure deletion scheme which can efficiently Remove both the data and the corresponding duplicates towards secure deletion on Flash memory. Security analysis and experimental evaluation show that RedFlash can ensure the secure deletion guarantee, at the cost of a small performance degradation, compared to a regular (non-secure) flash controller.more » « less
An official website of the United States government

