skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimal Measurement Policy for Linear Measurement Systems with Applications to UAV Network Topology Prediction
Dynamic network topology can pose important challenges to communication and control protocols in networks of autonomous vehicles. For instance, maintaining connectivity is a key challenge in unmanned aerial vehicle (UAV) networks. However, tracking and computational resources of the observer module might not be sufficient for constant monitoring of all surrounding nodes in large-scale networks. In this paper, we propose an optimal measurement policy for network topology monitoring under constrained resources. To this end, We formulate the localization of multiple objects in terms of linear networked systems and solve it using Kalman filtering with intermittent observation. The proposed policy includes two sequential steps. We first find optimal measurement attempt probabilities for each target using numerical optimization methods to assign the limited number of resources among targets. The optimal resource allocation follows a waterfall-like solution to assign more resources to targets with lower measurement success probability. This provides a 10% to 60% gain in prediction accuracy. The second step is finding optimal on-off patterns for measurement attempts for each target over time. We show that a regular measurement pattern that evenly distributed resources over time outperforms the two extreme cases of using all measurement resources either in the beginning or at the end of the measurement cycle. Our proof is based on characterizing the fixed-point solution of the error covariance matrix for regular patterns. Extensive simulation results confirm the optimality of the most alternating pattern with up to 10-fold prediction improvement for different scenarios. These two guidelines define a general policy for target tracking under constrained resources with applications to network topology prediction of autonomous systems  more » « less
Award ID(s):
1755984
PAR ID:
10133275
Author(s) / Creator(s):
Date Published:
Journal Name:
IEEE Transactions on Vehicular Technology
ISSN:
0018-9545
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Network measurement and monitoring are instrumental to network operations, planning and troubleshooting. However, increasing line rates (100+Gbps), changing measurement targets and metrics, privacy concerns, and policy differences across multiple R&E network domains have introduced tremendous challenges in operating such high-speed heterogeneous networks, understanding the traffic patterns, providing for resource optimization, and locating and resolving network issues. There is strong demand for a flexible, high-performance measurement instrument that can empower network operators to achieve the versatile objectives of effective network management and resource provisioning. In this demonstration, we present AMIS: Advanced Measurement Instrument and Services to achieve programmable, flow-granularity and event-driven network measurement, sustain scalable line rates, to meet evolving measurement objectives and to derive knowledge for network advancement. 
    more » « less
  2. Existing approaches for autonomous control of pan-tilt-zoom (PTZ) cameras use multiple stages where object detection and localization are performed separately from the control of the PTZ mechanisms. These approaches require manual labels and suffer from performance bottlenecks due to error propagation across the multi-stage flow of information. The large size of object detection neural networks also makes prior solutions infeasible for real-time deployment in resource-constrained devices. We present an end-to-end deep reinforcement learning (RL) solution called Eagle1 to train a neural network policy that directly takes images as input to control the PTZ camera. Training reinforcement learning is cumbersome in the real world due to labeling effort, runtime environment stochasticity, and fragile experimental setups. We introduce a photo-realistic simulation framework for training and evaluation of PTZ camera control policies. Eagle achieves superior camera control performance by maintaining the object of interest close to the center of captured images at high resolution and has up to 17% more tracking duration than the state-of-the-art. Eagle policies are lightweight (90x fewer parameters than Yolo5s) and can run on embedded camera platforms such as Raspberry PI (33 FPS) and Jetson Nano (38 FPS), facilitating real-time PTZ tracking for resource-constrained environments. With domain randomization, Eagle policies trained in our simulator can be transferred directly to real-world scenarios2. 
    more » « less
  3. Abstract MotivationAccurately predicting drug–target interactions (DTIs) in silico can guide the drug discovery process and thus facilitate drug development. Computational approaches for DTI prediction that adopt the systems biology perspective generally exploit the rationale that the properties of drugs and targets can be characterized by their functional roles in biological networks. ResultsInspired by recent advance of information passing and aggregation techniques that generalize the convolution neural networks to mine large-scale graph data and greatly improve the performance of many network-related prediction tasks, we develop a new nonlinear end-to-end learning model, called NeoDTI, that integrates diverse information from heterogeneous network data and automatically learns topology-preserving representations of drugs and targets to facilitate DTI prediction. The substantial prediction performance improvement over other state-of-the-art DTI prediction methods as well as several novel predicted DTIs with evidence supports from previous studies have demonstrated the superior predictive power of NeoDTI. In addition, NeoDTI is robust against a wide range of choices of hyperparameters and is ready to integrate more drug and target related information (e.g. compound–protein binding affinity data). All these results suggest that NeoDTI can offer a powerful and robust tool for drug development and drug repositioning. Availability and implementationThe source code and data used in NeoDTI are available at: https://github.com/FangpingWan/NeoDTI. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  4. We study two multi-robot assignment problems for multi-target tracking. We consider distributed approaches in order to deal with limited sensing and communication ranges. We seek to simultaneously assign trajectories and targets to the robots. Our focus is on \emph{local} algorithms that achieve performance close to the optimal algorithms with limited communication. We show how to use a local algorithm that guarantees a bounded approximate solution within $$\mathcal{O}(h\log{1/\epsilon})$$ communication rounds. We compare with a greedy approach that achieves a $$2$$--approximation in as many rounds as the number of robots. Simulation results show that the local algorithm is an effective solution to the assignment problem. 
    more » « less
  5. Emerging Internet of Things (IoT) provides connectivity to a wide range of mobile nodes including indoor wireless users, pedestrian, ground robotics, vehicles, and flying objects. Such decentralized network require rethinking user-centric communication protocols which accommodate extremely dynamic environments of autonomous nodes. The authors recently proposed a predictive routing algorithm, which enables a delay-optimal communication through incorporating network topology prediction into the Dijkstra's shortest path algorithm. In this work, we extend the proposed solution to jointly optimize the end-to-end latency and total transmission power. Further, we develop a ground robotics platform in order to study the utility of the proposed algorithm in real-world applications. The simulation results which verified by the test platform, confirm the superiority of the proposed algorithm compared to the conventional shortest path algorithms by improving the delay and power consumption by a factor of 10% to 15%. 
    more » « less