skip to main content


Title: The leaf miner Phyllocnistis populiella negatively impacts water relations in aspen
Abstract Within the North American boreal forest, a widespread outbreak of the epidermal leaf miner Phyllocnistis populiella has damaged quaking aspen (Populus tremuloides) for nearly 20 years. In a series of experiments, we tested the effects of feeding damage by P. populiella on leaf water relations and gas exchange. Relative to insecticide-treated trees, the leaves of naturally-mined trees had lower photosynthesis, stomatal conductance to water vapor, transpiration, water use efficiency, predawn water potential, and water content, as well as more enriched foliar δ13C. The magnitude of the difference between naturally-mined and insecticide-treated trees did not change significantly throughout the growing season, suggesting the effect is not caused by accumulation of incidental damage to mined portions of the epidermis over time. The contributions of mining-related stomatal malfunction and cuticular transpiration to these overall effects were investigated by restricting mining damage to stomatous abaxial and astomatous adaxial leaf surfaces. Mining of the abaxial epidermis decreased photosynthesis and enriched leaf δ13C, while increasing leaf water potential and water content relative to unmined leaves; effects consistent with stomatal closure due to disfunction of mined guard cells. Mining of the adaxial epidermis also reduced photosynthesis but had different effects on water relations, reducing midday leaf water potential and water content relative to unmined leaves, and did not affect δ13C. In the laboratory, extent of mining damage to the adaxial surface was positively related to the rate of water loss by leaves treated to prevent water loss through stomata. We conclude that overall, despite water savings due to closure of mined stomata, natural levels of damage by P. populiella negatively impact water relations due to increased cuticular permeability to water vapor across the mined portions of the epidermis. Leaf mining by P. populiella could exacerbate the negative effects of climate warming and water deficit in interior Alaska.  more » « less
Award ID(s):
1636476
NSF-PAR ID:
10133778
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Tree Physiology
ISSN:
1758-4469
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The hydrophobic cuticle of plant shoots serves as an important interaction interface with the environment. It consists of the lipid polymer cutin, embedded with and covered by waxes, and provides protection against stresses including desiccation, UV radiation, and pathogen attack. Bulliform cells form in longitudinal strips on the adaxial leaf surface, and have been implicated in the leaf rolling response observed in drought‐stressed grass leaves. In this study, we show that bulliform cells of the adult maize leaf epidermis have a specialized cuticle, and we investigate its function along with that of bulliform cells themselves. Bulliform cells displayed increased shrinkage compared to other epidermal cell types during dehydration of the leaf, providing a potential mechanism to facilitate leaf rolling. Analysis of natural variation was used to relate bulliform strip patterning to leaf rolling rate, providing further evidence of a role for bulliform cells in leaf rolling. Bulliform cell cuticles showed a distinct ultrastructure with increased cuticle thickness compared to other leaf epidermal cells. Comparisons of cuticular conductance between adaxial and abaxial leaf surfaces, and between bulliform‐enriched mutants versus wild‐type siblings, showed a correlation between elevated water loss rates and presence or increased density of bulliform cells, suggesting that bulliform cuticles are more water‐permeable. Biochemical analysis revealed altered cutin composition and increased cutin monomer content in bulliform‐enriched tissues. In particular, our findings suggest that an increase in 9,10‐epoxy‐18‐hydroxyoctadecanoic acid content, and a lower proportion of ferulate, are characteristics of bulliform cuticles. We hypothesize that elevated water permeability of the bulliform cell cuticle contributes to the differential shrinkage of these cells during leaf dehydration, thereby facilitating the function of bulliform cells in stress‐induced leaf rolling observed in grasses.

     
    more » « less
  2. Inselsbacher, Erich (Ed.)
    Abstract

    Stomatal density, stomatal length and carbon isotope composition can all provide insights into environmental controls on photosynthesis and transpiration. Stomatal measurements can be time-consuming; it is therefore wise to consider efficient sampling schemes. Knowing the variance partitioning at different measurement levels (i.e., among stands, plots, trees, leaves and within leaves) can aid in making informed decisions around where to focus sampling effort. In this study, we explored the effects of nitrogen (N), phosphorus (P) and calcium silicate (CaSiO3) addition on stomatal density, length and carbon isotope composition (δ13C) of sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britton). We observed a positive but small (8%) increase in stomatal density with P addition and an increase in δ13C with N and CaSiO3 addition in sugar maple, but we did not observe effects of nutrient addition on these characteristics in yellow birch. Variability was highest within leaves and among trees for stomatal density and highest among stomata for stomatal length. To reduce variability and increase chances of detecting treatment differences in stomatal density and length, future protocols should consider pretreatment and repeated measurements of trees over time or measure more trees per plot, increase the number of leaf impressions or standardize their locations, measure more stomata per image and ensure consistent light availability.

     
    more » « less
  3. Abstract

    Capparis odoratissimais a tree species native to semi‐arid environments of South America where low soil water availability coexists with frequent night‐time fog. A previous study showed that water applied to leaf surfaces enhanced leaf hydration, photosynthesis and growth, but the mechanisms of foliar water uptake are unknown. Here, we combine detailed anatomical evaluations with water and dye uptake experiments in the laboratory, and use immunolocalization of pectin and arabinogalactan protein epitopes to characterize water uptake pathways in leaves. Abaxially, the leaves ofC. odoratissimaare covered with peltate hairs, while the adaxial surfaces are glabrous. Both surfaces are able to absorb condensed water, but the abaxial surface has higher rates of water uptake. Thousands of idioblasts per cm2, a higher density than stomata, connect the adaxial leaf surface and the abaxial peltate hairs, both of which contain hygroscopic substances such as arabinogalactan proteins and pectins. The highly specialized anatomy of the leaves ofC odoratissimafulfils the dual function of minimizing water loss when stomata are closed, while maintaining the ability to absorb liquid water. Cell‐wall related hygroscopic compounds in the peltate hairs and idioblasts create a network of microchannels that maintain leaf hydration and promote water uptake.

     
    more » « less
  4. Leaf hydraulic networks play an important role not only in fluid transport but also in maintaining whole-plant water status through transient environmental changes in soil-based water supply or air humidity. Both water potential and hydraulic resistance vary spatially throughout the leaf transport network, consisting of xylem, stomata and water-storage cells, and portions of the leaf areas far from the leaf base can be disproportionately disadvantaged under water stress. Besides the suppression of transpiration and reduction of water loss caused by stomatal closure, the leaf capacitance of water storage, which can also vary locally, is thought to be crucial for the maintenance of leaf water status. In order to study the fluid dynamics in these networks, we develop a spatially explicit, capacitive model which is able to capture the local spatiotemporal changes of water potential and flow rate in monocotyledonous and dicotyledonous leaves. In electrical-circuit analogs described by Ohm's law, we implement linear capacitors imitating water storage, and we present both analytical calculations of a uniform one-dimensional model and numerical simulation methods for general spatially explicit network models, and their relation to conventional lumped-element models. Calculation and simulation results are shown for the uniform model, which mimics key properties of a monocotyledonous grass leaf. We illustrate water status of a well-watered leaf, and the lowering of water potential and transpiration rate caused by excised water source or reduced air humidity. We show that the time scales of these changes under water stress are hugely affected by leaf capacitance and resistances to capacitors, in addition to stomatal resistance. Through this modeling of a grass leaf, we confirm the presence of uneven water distribution over leaf area, and also discuss the importance of considering the spatial variation of leaf hydraulic traits in plant biology. 
    more » « less
  5. Abstract Local adaptation is often a product of environmental variations in geographical space and has implications for biodiversity conservation. We investigated the role of latitudinal heterogeneity in climate on the organization of genetic and phenotypic variation in the dominant coastal tree Avicennia schaueriana . In a common garden experiment, samples from an equatorial region, with pronounced seasonality in precipitation, accumulated less biomass, and showed lower stomatal conductance and transpiration, narrower xylem vessels, smaller leaves and higher reflectance of long wavelengths by the stem epidermis than samples from a subtropical region, with seasonality in temperature and no dry season. Transcriptomic differences identified between trees sampled under field conditions at equatorial and subtropical sites, were enriched in functional categories such as responses to temperature, solar radiation, water deficit, photosynthesis and cell wall biosynthesis. Remarkably, the diversity based on genome-wide SNPs revealed a north-south genetic structure and signatures of selection were identified for loci associated with photosynthesis, anthocyanin accumulation and the responses to osmotic and hypoxia stresses. Our results suggest the existence of divergence in key resource-use characteristics, likely driven by seasonality in water deficit and solar radiation. These findings provide a basis for conservation plans and for predicting coastal plants responses to climate change. 
    more » « less