skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Does stomatal patterning in amphistomatous leaves minimize the CO2 diffusion path length within leaves?
Abstract Photosynthesis is co-limited by multiple factors depending on the plant and its environment. These include biochemical rate limitations, internal and external water potentials, temperature, irradiance and carbon dioxide ( CO2). Amphistomatous leaves have stomata on both abaxial and adaxial leaf surfaces. This feature is considered an adaptation to alleviate CO2 diffusion limitations in productive environments as the diffusion path length from stomate to chloroplast is effectively halved in amphistomatous leaves. Plants may also reduce CO2 limitations through other aspects of optimal stomatal anatomy: stomatal density, distribution, patterning and size. Some studies have demonstrated that stomata are overdispersed compared to a random distribution on a single leaf surface; however, despite their prevalence in nature and near ubiquity among crop species, much less is known about stomatal anatomy in amphistomatous leaves, especially the coordination between leaf surfaces. Here, we use novel spatial statistics based on simulations and photosynthesis modelling to test hypotheses about how amphistomatous plants may optimize CO2 diffusion in the model angiosperm Arabidopsis thaliana grown in different light environments. We find that (i) stomata are overdispersed, but not ideally dispersed, on both leaf surfaces across all light treatments; (ii) the patterning of stomata on abaxial and adaxial leaf surfaces is independent and (iii) the theoretical improvements to photosynthesis from abaxial–adaxial stomatal coordination are miniscule (≪1%) across the range of feasible parameter space. However, we also find that (iv) stomatal size is correlated with the mesophyll volume that it supplies with CO2, suggesting that plants may optimize CO2 diffusion limitations through alternative pathways other than ideal, uniform stomatal spacing. We discuss the developmental, physical and evolutionary constraints that may prohibit plants from reaching this theoretical adaptive peak of uniform stomatal spacing and inter-surface stomatal coordination. These findings contribute to our understanding of variation in the anatomy of amphistomatous leaves.  more » « less
Award ID(s):
2307341
PAR ID:
10617636
Author(s) / Creator(s):
; ; ;
Editor(s):
Salter, William
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
AoB PLANTS
Volume:
16
Issue:
2
ISSN:
2041-2851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Within the North American boreal forest, a widespread outbreak of the epidermal leaf miner Phyllocnistis populiella has damaged quaking aspen (Populus tremuloides) for nearly 20 years. In a series of experiments, we tested the effects of feeding damage by P. populiella on leaf water relations and gas exchange. Relative to insecticide-treated trees, the leaves of naturally-mined trees had lower photosynthesis, stomatal conductance to water vapor, transpiration, water use efficiency, predawn water potential, and water content, as well as more enriched foliar δ13C. The magnitude of the difference between naturally-mined and insecticide-treated trees did not change significantly throughout the growing season, suggesting the effect is not caused by accumulation of incidental damage to mined portions of the epidermis over time. The contributions of mining-related stomatal malfunction and cuticular transpiration to these overall effects were investigated by restricting mining damage to stomatous abaxial and astomatous adaxial leaf surfaces. Mining of the abaxial epidermis decreased photosynthesis and enriched leaf δ13C, while increasing leaf water potential and water content relative to unmined leaves; effects consistent with stomatal closure due to disfunction of mined guard cells. Mining of the adaxial epidermis also reduced photosynthesis but had different effects on water relations, reducing midday leaf water potential and water content relative to unmined leaves, and did not affect δ13C. In the laboratory, extent of mining damage to the adaxial surface was positively related to the rate of water loss by leaves treated to prevent water loss through stomata. We conclude that overall, despite water savings due to closure of mined stomata, natural levels of damage by P. populiella negatively impact water relations due to increased cuticular permeability to water vapor across the mined portions of the epidermis. Leaf mining by P. populiella could exacerbate the negative effects of climate warming and water deficit in interior Alaska. 
    more » « less
  2. SUMMARY Eudicot plant species have leaves with two surfaces: the lower abaxial and the upper adaxial surface. Each surface varies in a diversity of components and molecular signals, resulting in potentially different degrees of resistance to pathogens. We tested howBotrytis cinerea, a necrotroph fungal pathogen, interacts with the two different leaf surfaces across 16 crop species and 20 Arabidopsis genotypes. This showed that the abaxial surface is generally more susceptible to the pathogen than the adaxial surface. In Arabidopsis, the differential lesion area between leaf surfaces was associated with jasmonic acid (JA) and salicylic acid (SA) signaling and differential induction of defense chemistry across the two surfaces. When infecting the adaxial surface, leaves mounted stronger defenses by producing more glucosinolates and camalexin defense compounds, partially explaining the differential susceptibility across surfaces. Testing a collection of 96B. cinereastrains showed the genetic heterogeneity of growth patterns, with a few strains preferring the adaxial surface while most are more virulent on the abaxial surface. Overall, we show that leaf–Botrytis interactions are complex with host‐specific, surface‐specific, and strain‐specific patterns. 
    more » « less
  3. Abstract Powdery mildew fungi are obligate biotrophic pathogens that only invade plant epidermal cells. There are two epidermal surfaces in every plant leaf: the adaxial (upper) side and the abaxial (lower) side. While both leaf surfaces can be susceptible to adapted powdery mildew fungi in many plant species, there have been observations of leaf abaxial immunity in some plant species including Arabidopsis. The genetic basis of such leaf abaxial immunity remains unknown. In this study, we tested a series of Arabidopsis mutants defective in one or more known defense pathways with the adapted powdery mildew isolate Golovinomyces cichoracearum UCSC1. We found that leaf abaxial immunity was significantly compromised in mutants impaired for both the EDS1/PAD4- and PEN2/PEN3-dependent defenses. Consistently, expression of EDS1–yellow fluorescent protein and PEN2–green fluorescent protein fusions from their respective native promoters in the respective eds1-2 and pen2-1 mutant backgrounds was higher in the abaxial epidermal cells than in the adaxial epidermal cells. Altogether, our results indicate that leaf abaxial immunity against powdery mildew in Arabidopsis is at least partially due to enhanced EDS1/PAD4- and PEN2/PEN3-dependent defenses. Such transcriptionally pre-programmed defense mechanisms may underlie leaf abaxial immunity in other plant species such as hemp and may be exploited for engineering adaxial immunity against powdery mildew fungi in crop plants. 
    more » « less
  4. Drop condensation and evaporation as a result of the gradient in vapor concentration are important in both engineering and natural systems. One of the interesting natural examples is transpiration on plant leaves. Most of the water in the inner space of the leaves escapes through stomata, whose rate depends on the surface topography and a difference in vapor concentrations inside and just outside of the leaves. Previous research on the vapor flux on various surfaces has focused on numerically solving the vapor diffusion equation or using scaling arguments based on a simple solution with a flat surface. In this present work, we present and discuss simple analytical solutions on various 2D surface shapes (e.g., semicylinder, semiellipse, hair). The method of solving the diffusion equation is to use the complex potential theory, which provides analytical solutions for vapor concentration and flux. We find that a high mass flux of vapor is formed near the top of the microstructures while a low mass flux is developed near the stomata at the leaf surface. Such a low vapor flux near the stomata may affect transpiration in two ways. First, condensed droplets on the stomata will not grow due to a low mass flux of vapor, which will not inhibit the gas exchange through the stomatal opening. Second, the low mass flux from the atmosphere will facilitate the release of highly concentrated vapor from the substomatal space. 
    more » « less
  5. Abstract Planar structures dramatically increase the surface‐area‐to‐volume ratio, which is critically important for multicellular organisms. In this study, we utilize naturally occurring phenotypic variation among threeSansivieriaspecies (Asperagaceae) to investigate leaf margin expression patterns that are associated with mediolateral and adaxial/abaxial development. We identified differentially expressed genes (DEGs) between center and margin leaf tissues in two planar‐leaf speciesSansevieria subspicataandSansevieria trifasciataand compared these with expression patterns within the cylindrically leavedSansevieria cylindrica. TwoYABBYfamily genes, homologs ofFILAMENTOUS FLOWERandDROOPING LEAF, are overexpressed in the center leaf tissue in the planar‐leaf species and in the tissue of the cylindrical leaves. As mesophyll structure does not indicate adaxial versus abaxial differentiation, increased leaf thickness results in more water‐storage tissue and enhances resistance to aridity. This suggests that the cylindrical‐leaf inS. cylindricais analogous to the central leaf tissue in the planar‐leaf species. Furthermore, the congruence of the expression patterns of theseYABBYgenes inSansevieriawith expression patterns found in other unifacial monocot species suggests that patterns of parallel evolution may be the result of similar solutions derived from a limited developmental toolbox. 
    more » « less