skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Latitudinal variation in snowshoe hare ( Lepus americanus ) body mass: a test of Bergmann’s rule
The relationship between body size and latitude has been the focus of dozens of studies across many species. However, results of testing Bergmann’s rule — that organisms in colder climates or at higher latitudes possess larger body sizes — have been inconsistent across studies. We investigated whether snowshoe hares (Lepus americanus Erxleben, 1777) follow Bergmann’s rule by investigating differences in body mass using data from six published studies and from data of 755 individual hares captured from 10 populations across North America covering 26° of north latitude. We also explored alternative hypotheses related to variation in hare body mass, including winter severity, length of growing season, elevation, and snow depth. We found body mass of hares varied throughout their range, but the drivers of body mass differed based on geographic location. In northern populations, females followed Bergmann’s rule, whereas males did not. In northern populations, male mass was related to mean snow depth. In contrast, in southern populations, body mass of both sexes was related to length of the growing season. These differences likely represent variation in the drivers of selection. Specifically, in the north, a large body size is beneficial to conserve heat because of low winter temperatures, whereas in the south, it is likely due to increased food supply associated with longer growing seasons.  more » « less
Award ID(s):
1636476
PAR ID:
10133787
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Canadian Journal of Zoology
Volume:
98
Issue:
2
ISSN:
0008-4301
Page Range / eLocation ID:
88 to 95
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract AimPhenological mismatches, when life‐events become mistimed with optimal environmental conditions, have become increasingly common under climate change. Population‐level susceptibility to mismatches depends on how phenology and phenotypic plasticity vary across a species’ distributional range. Here, we quantify the environmental drivers of colour moult phenology, phenotypic plasticity, and the extent of phenological mismatch in seasonal camouflage to assess vulnerability to mismatch in a common North American mammal. LocationNorth America. Time period2010–2017. Major taxa studiedSnowshoe hare (Lepus americanus). MethodsWe used > 5,500 by‐catch photographs of snowshoe hares from 448 remote camera trap sites at three independent study areas. To quantify moult phenology and phenotypic plasticity, we used multinomial logistic regression models that incorporated geospatial and high‐resolution climate data. We estimated occurrence of camouflage mismatch between hares’ coat colour and the presence and absence of snow over 7 years of monitoring. ResultsSpatial and temporal variation in moult phenology depended on local climate conditions more so than on latitude. First, hares in colder, snowier areas moulted earlier in the fall and later in the spring. Next, hares exhibited phenotypic plasticity in moult phenology in response to annual variation in temperature and snow duration, especially in the spring. Finally, the occurrence of camouflage mismatch varied in space and time; white hares on dark, snowless background occurred primarily during low‐snow years in regions characterized by shallow, short‐lasting snowpack. Main conclusionsLong‐term climate and annual variation in snow and temperature determine coat colour moult phenology in snowshoe hares. In most areas, climate change leads to shorter snow seasons, but the occurrence of camouflage mismatch varies across the species’ range. Our results underscore the population‐specific susceptibility to climate change‐induced stressors and the necessity to understand this variation to prioritize the populations most vulnerable under global environmental change. 
    more » « less
  2. Biologists aim to explain patterns of growth, reproduction, and ageing that characterize life histories, yet we are just beginning to understand the proximate mechanisms that generate this diversity. Existing research in this area has focused on telomeres but has generally overlooked the telomere’s most direct mediator, the shelterin protein complex. Shelterin proteins physically interact with the telomere to shape its shortening and repair. They also regulate metabolism and immune function, suggesting a potential role in life history variation in the wild. However, research on shelterin proteins is uncommon outside of biomolecular work. Intraspecific analyses can play an important role in resolving these unknowns because they reveal subtle variation in life history within and among populations. Here, we assessed ecogeographic variation in shelterin protein abundance across eight populations of tree swallow (Tachycineta bicolor) with previously documented variation in environmental and life history traits. Using blood gene expression of four shelterin proteins in 12-day old nestlings, we tested the hypothesis that shelterin protein gene expression varies latitudinally and in relation to both telomere length and life history. Shelterin protein gene expression differed among populations and tracked non-linear variation in latitude: nestlings from mid-latitudes expressed nearly double the shelterin mRNA on average than those at more northern and southern sites. However, telomere length was not significantly related to latitude. We next assessed whether telomere length and shelterin protein gene expression correlate with 12-day old body mass and wing length, two proxies of nestling growth linked to future fecundity and survival. We found that body mass and wing length correlated more strongly (and significantly) with shelterin protein gene expression than with telomere length. These results highlight telomere regulatory shelterin proteins as potential mediators of life history variation among populations. Together with existing research linking shelterin proteins and life history variation within populations, these ecogeographic patterns underscore the need for continued integration of ecology, evolution, and telomere biology, which together will advance understanding of the drivers of life history variation in nature. 
    more » « less
  3. Data associated with the publication: Conrad-Rooney E, AB Reinmann, PH Templer. Declining Winter Snowpack Offsets Carbon Storage Enhancement from Growing Season Warming in Northern Temperate Forest Ecosystems. Proceedings of the National Academy of Sciences, 2025. This dataset includes soil temperature (winter 2021-2022) and snow depth and frost depth (winter 2022-2023) at the Climate Change Across Seasons Experiment. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  4. Abstract Biologists aim to explain patterns of growth, reproduction and ageing that characterize life histories, yet we are just beginning to understand the proximate mechanisms that generate this diversity. Existing research in this area has focused on telomeres but has generally overlooked the telomere's most direct mediator, the shelterin protein complex. Shelterin proteins physically interact with the telomere to shape its shortening and repair. They also regulate metabolism and immune function, suggesting a potential role in life history variation in the wild. However, research on shelterin proteins is uncommon outside of biomolecular work.Intraspecific analyses can play an important role in resolving these unknowns because they reveal subtle variation in life history within and among populations. Here, we assessed ecogeographic variation in shelterin protein abundance across eight populations of tree swallow (Tachycineta bicolor) with previously documented variation in environmental and life history traits. Using the blood gene expression of four shelterin proteins in 12‐day‐old nestlings, we tested the hypothesis that shelterin protein gene expression varies latitudinally and in relation to both telomere length and life history.Shelterin protein gene expression differed among populations and tracked non‐linear variation in latitude: nestlings from mid‐latitudes expressed nearly double the shelterin mRNA on average than those at more northern and southern sites. However, telomere length was not significantly related to latitude.We next assessed whether telomere length and shelterin protein gene expression correlate with 12‐day‐old body mass and wing length, two proxies of nestling growth linked to future fecundity and survival. We found that body mass and wing length correlated more strongly (and significantly) with shelterin protein gene expression than with telomere length.These results highlight telomere regulatory shelterin proteins as potential mediators of life history variation among populations. Together with existing research linking shelterin proteins and life history variation within populations, these ecogeographic patterns underscore the need for continued integration of ecology, evolution and telomere biology, which together will advance understanding of the drivers of life history variation in nature. 
    more » « less
  5. Abstract Maternal provisioning and the developmental environment are fundamental determinants of offspring traits, particularly in oviparous species. However, the extent to which embryonic responses to these factors differ across populations to drive phenotypic variation is not well understood. Here, we examine the contributions of maternal provisioning and incubation temperature to hatchling morphological and metabolic traits across four populations of the American alligator (Alligator mississippiensis), encompassing a large portion of the species' latitudinal range. Our results show that whereas the influence of egg mass is generally consistent across populations, responses to incubation temperature show population‐level variation in several traits, including mass, head length, head width, and residual yolk mass. Additionally, the influence of incubation temperature on developmental rate is greater at northern populations, while the allocation of maternal resources toward fat body mass is greater at southern populations. Overall, our results suggest that responses to incubation temperature, relative to maternal provisioning, are a larger source of interpopulation phenotypic variation and may contribute to the local adaptation of populations. 
    more » « less