Real-time three-dimensional single-particle tracking (RT-3D-SPT) allows continuous detection of individual freely diffusing objects with high spatiotemporal precision by applying closed-loop active feedback in an optical microscope. However, the current tracking speed in RT-3D-SPT is primarily limited by the response time of control actuators, impeding long-term observation of fast diffusive objects such as single molecules. Here, we present an RT-3D-SPT system with improved tracking performance by replacing the XY piezoelectric stage with a galvo scanning mirror with an approximately five-time faster response rate (~5 kHz). Based on the previously developed 3D single-molecule active real-time tracking (3D-SMART), this new implementation with a fast-responding galvo mirror eliminates the mechanical movement of the sample and allows more rapid response to particle motion. The improved tracking performance of the galvo mirror-based implementation is verified through simulation and proof-of-principle experiments. Fluorescent nanoparticles and ~ 1 kB double-stranded DNA molecules were tracked via both the original piezoelectric stage and new galvo mirror implementations. With the new galvo-based implementation, notable increases in tracking duration, localization precision, and the degree to which the objects are locked to the center of the detection volume were observed. These results suggest faster control response elements can expand RT-3D-SPT to a broader range of chemical and biological systems.
more »
« less
Real-Time 3D Single Particle Tracking: Towards Active Feedback Single Molecule Spectroscopy in Live Cells
Single molecule fluorescence spectroscopy has been largely implemented using methods which require tethering of molecules to a substrate in order to make high temporal resolution measurements. However, the act of tethering a molecule requires that the molecule be removed from its environment. This is especially perturbative when measuring biomolecules such as enzymes, which may rely on the non-equilibrium and crowded cellular environment for normal function. A method which may be able to un-tether single molecule fluorescence spectroscopy is real-time 3D single particle tracking (RT-3D-SPT). RT-3D-SPT uses active feedback to effectively lock-on to freely diffusing particles so they can be measured continuously with up to photon-limited temporal resolution over large axial ranges. This review gives an overview of the various active feedback 3D single particle tracking methods, highlighting specialized detection and excitation schemes which enable high-speed real-time tracking. Furthermore, the combination of these active feedback methods with simultaneous live-cell imaging is discussed. Finally, the successes in real-time 3D single molecule tracking (RT-3D-SMT) thus far and the roadmap going forward for this promising family of techniques are discussed.
more »
« less
- Award ID(s):
- 1847899
- PAR ID:
- 10133942
- Date Published:
- Journal Name:
- Molecules
- Volume:
- 24
- Issue:
- 15
- ISSN:
- 1420-3049
- Page Range / eLocation ID:
- 2826
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract To date, single molecule studies have been reliant on tethering or confinement to achieve long duration and high temporal resolution measurements. Here, we present a 3D single-molecule active real-time tracking method (3D-SMART) which is capable of locking on to single fluorophores in solution for minutes at a time with photon limited temporal resolution. As a demonstration, 3D-SMART is applied to actively track single Atto 647 N fluorophores in 90% glycerol solution with an average duration of ~16 s at count rates of ~10 kHz. Active feedback tracking is further applied to single proteins and nucleic acids, directly measuring the diffusion of various lengths (99 to 1385 bp) of single DNA molecules at rates up to 10 µm2/s. In addition, 3D-SMART is able to quantify the occupancy of single Spinach2 RNA aptamers and capture active transcription on single freely diffusing DNA. 3D-SMART represents a critical step towards the untethering of single molecule spectroscopy.more » « less
-
Since the early 1990s, single-molecule detection in solution at room temperature has enabled direct observation of single biomolecules at work in real time and under physiological conditions, providing insights into complex biological systems that the traditional ensemble methods cannot offer. In particular, recent advances in single-molecule tracking techniques allow researchers to follow individual biomolecules in their native environments for a timescale of seconds to minutes, revealing not only the distinct pathways these biomolecules take for downstream signaling but also their roles in supporting life. In this review, we discuss various single-molecule tracking and imaging techniques developed to date, with an emphasis on advanced three-dimensional (3D) tracking systems that not only achieve ultrahigh spatiotemporal resolution but also provide sufficient working depths suitable for tracking single molecules in 3D tissue models. We then summarize the observables that can be extracted from the trajectory data. Methods to perform single-molecule clustering analysis and future directions are also discussed.more » « less
-
Despite successes in tracking single molecules in vitro, the extension of active-feedback single-particle methods to tracking rapidly diffusing and unconfined proteins in live cells has not been realized. Since the existing active-feedback localization methods localize particles in real time assuming zero background, they are ill-suited to track in the inhomogeneous background environment of a live cell. Here, we develop a windowed estimation of signal and background levels using recent data to estimate the current particle brightness and background intensity. These estimates facilitate recursive Bayesian position estimation, improving upon current Kalman-based localization methods. Combined, online Bayesian and windowed estimation of background and signal (COBWEBS) surpasses existing 2D localization methods. Simulations demonstrate improved localization accuracy and responsivity in a homogeneous background for selected particle and background intensity combinations. Improved or similar performance of COBWEBS tracking extends to the majority of signal and background combinations explored. Furthermore, improved tracking durations are demonstrated in the presence of heterogeneous backgrounds for multiple particle intensities, diffusive speeds, and background patterns. COBWEBS can accurately track particles in the presence of high and nonuniform backgrounds, including intensity changes of up to three times the particle’s intensity, making it a prime candidate for advancing active-feedback single fluorophore tracking to the cellular interior.more » « less
-
Spectroscopic single-molecule localization microscopy (sSMLM) generates super-resolution images of single molecules while simultaneously capturing the spectra of their fluorescence emissions. However, sSMLM splits photons from single-molecule emissions into a spatial channel and a spectral channel, reducing both channels’ precisions. It is also challenging in transmission grating-based sSMLM to achieve a large field-of-view (FOV) and avoid overlap between the spatial and spectral channels. The challenge in FOV has further significance in single-molecule tracking applications. In this work, we analyzed the correlation between the spatial and spectral channels in sSMLM to improve its spatial precision, and we developed a split-mirror assembly to enlarge its FOV. We demonstrate the benefits of these improvements by tracking quantum dots. We also show that we can reduce particle-identification ambiguity by tagging each particle with its unique spectral characteristics.more » « less
An official website of the United States government

