skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Creating High Quality All-Sky Visualizations of Astronomy Image Data Sets: HiPS and Montage
We describe a case study to use the Montage image mosaic engine to create maps of the ALLWISE image data set in the Hierarchical Progressive Survey (HiPS) sky-tesselation scheme. Our approach demonstrates that Montage reveals the science content of infrared images in greater detail than has hitherto been possible in HiPS maps. The approach exploits two unique (to our knowledge) characteristics of the Montage image mosaic engine: background modeling to rectify the time variable image backgrounds to common levels; and an adaptive image stretch to present images for visualization. The creation of the maps is supported by the development of four new tools that when fully tested will become part of the Montage distribution. The compute intensive part of the processing lies in the reprojection of the images, and we show how we optimized the processing for efficient creation of mosaics that are used in turn to create maps in the HiPS tiling scheme. We plan to apply our methodology to infrared image data sets such a those delivered by Spitzer, 2MASS, IRAS and Planck.  more » « less
Award ID(s):
1835379
NSF-PAR ID:
10133978
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of Astronomical Data Analysis Software & Systems (ADASS) XXIX
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. e describe the use of Montage to create all-sky astronomy maps compliant with the Hierarchical Progressive Survey (HiPS) sky-tesselation scheme. These maps support panning and zooming across the sky to progressively smaller scales, and are used widely for visualization in astronomy. They are, however, difficult to create at infrared wavelengths because of high background emission. Montage is an ideal tool for creating infrared maps for two reasons: it uses background modeling to rectify the time variable image backgrounds to a common level; and it uses an adaptive image stretch algorithm to convert the image data to display values for visualization. The creation of the maps involves the use of existing Montage tools in tandem with four new tools to support HiPS. We wil present images of infrared sky surveys in the HiPS scheme. 
    more » « less
  2. The Montage image mosaic engine has found wide applicability in astronomy research, integration into processing environments, and is an examplar application for the development of advanced cyber-infrastructure. It is written in C to provide performance and portability. Linking C/C++ libraries to the Python kernel at run time as binary extensions allows them to run under Python at compiled speeds and enables users to take advantage of all the functionality in Python. We have built Python binary extensions of the 59 ANSI-C modules that make up version 5 of the Montage toolkit. This has involved a turning the code into a C library, with driver code fully separated to reproduce the calling sequence of the command-line tools; and then adding Python and C linkage code with the Cython library, which acts as a bridge between general C libraries and the Python interface. We will demonstrate how to use these Python binary extensions to perform image processing, including reprojecting and resampling images, rectifying background emission to a common level, creation of image mosaics that preserve the calibration and astrometric fidelity of the input images, creating visualizations with an adaptive stretch algorithm, processing HEALPix images, and analyzing and managing image metadata. 
    more » « less
  3. This paper describes how we have sustained the Montage image mosaic engine (http://montage.ipac.caltech.edu) first released in 2002, to support the ever-growing scale and complexity of modern data sets. The key to its longevity has been its design as a toolkit written in ANSI-C, with each tool performing one distinct task, for easy integration into scripts, pipelines and workflows. The same code base now supports Windows, JavaScript and Python by taking advantage of recent advances in compilers. The design has led to applicability of Montage far beyond what was anticipated when Montage was first built, such as supporting observation planning for the JWST. Moreover, Montage is highly scalable and is in wide use within the IT community to develop advanced, fault-tolerant cyber-infrastructure, such as job schedulers for grids, workflow orchestration, and restructuring techniques for processing complex workflows and pipelines. 
    more » « less
  4. Landsat 5 has produced imagery for decades that can now be viewed and manipulated in Google Earth Engine, but a general, automated way of producing a coherent time series from these images—particularly over cloudy areas in the distant past—is elusive. Here, we create a land use and land cover (LULC) time series for part of tropical Mato Grosso, Brazil, using the Bayesian Updating of Land Cover: Unsupervised (BULC-U) technique. The algorithm built backward in time from the GlobCover 2009 data set, a multi-category global LULC data set at 300 m resolution for the year 2009, combining it with Landsat time series imagery to create a land cover time series for the period 1986–2000. Despite the substantial LULC differences between the 1990s and 2009 in this area, much of the landscape remained the same: we asked whether we could harness those similarities and differences to recreate an accurate version of the earlier LULC. The GlobCover basis and the Landsat-5 images shared neither a common spatial resolution nor time frame, But BULC-U successfully combined the labels from the coarser classification with the spatial detail of Landsat. The result was an accurate fine-scale time series that quantified the expansion of deforestation in the study area, which more than doubled in size during this time. Earth Engine directly enabled the fusion of these different data sets held in its catalog: its flexible treatment of spatial resolution, rapid prototyping, and overall processing speed permitted the development and testing of this study. Many would-be users of remote sensing data are currently limited by the need to have highly specialized knowledge to create classifications of older data. The approach shown here presents fewer obstacles to participation and allows a wide audience to create their own time series of past decades. By leveraging both the varied data catalog and the processing speed of Earth Engine, this research can contribute to the rapid advances underway in multi-temporal image classification techniques. Given Earth Engine’s power and deep catalog, this research further opens up remote sensing to a rapidly growing community of researchers and managers who need to understand the long-term dynamics of terrestrial systems. 
    more » « less
  5. Abstract

    Objective. Spontaneous fluctuations of cerebral hemodynamics measured by functional magnetic resonance imaging (fMRI) are widely used to study the network organization of the brain. The temporal correlations among the ultra-slow, <0.1 Hz fluctuations across the brain regions are interpreted as functional connectivity maps and used for diagnostics of neurological disorders. However, despite the interest narrowed in the ultra-slow fluctuations, hemodynamic activity that exists beyond the ultra-slow frequency range could contribute to the functional connectivity, which remains unclear.Approach. In the present study, we have measured the brain-wide hemodynamics in the human participants with functional near-infrared spectroscopy (fNIRS) in a whole-head, cap-based and high-density montage at a sampling rate of 6.25 Hz. In addition, we have acquired resting state fMRI scans in the same group of participants for cross-modal evaluation of the connectivity maps. Then fNIRS data were deliberately down-sampled to a typical fMRI sampling rate of ∼0.5 Hz and the resulted differential connectivity maps were subject to a k-means clustering.Main results. Our diffuse optical topographical analysis of fNIRS data have revealed a default mode network (DMN) in the spontaneous deoxygenated and oxygenated hemoglobin changes, which remarkably resemble the same fMRI network derived from participants. Moreover, we have shown that the aliased activities in the down-sampled optical signals have altered the connectivity patterns, resulting in a network organization of aliased functional connectivity in the cerebral hemodynamics.Significance.The results have for the first time demonstrated that fNIRS as a broadly accessible modality can image the resting-state functional connectivity in the posterior midline, prefrontal and parietal structures of the DMN in the human brain, in a consistent pattern with fMRI. Further empowered by the fast sampling rate of fNIRS, our findings suggest the presence of aliased connectivity in the current understanding of the human brain organization.

     
    more » « less