skip to main content


Title: Agricultural Expansion in Mato Grosso from 1986–2000: A Bayesian Time Series Approach to Tracking Past Land Cover Change
Landsat 5 has produced imagery for decades that can now be viewed and manipulated in Google Earth Engine, but a general, automated way of producing a coherent time series from these images—particularly over cloudy areas in the distant past—is elusive. Here, we create a land use and land cover (LULC) time series for part of tropical Mato Grosso, Brazil, using the Bayesian Updating of Land Cover: Unsupervised (BULC-U) technique. The algorithm built backward in time from the GlobCover 2009 data set, a multi-category global LULC data set at 300 m resolution for the year 2009, combining it with Landsat time series imagery to create a land cover time series for the period 1986–2000. Despite the substantial LULC differences between the 1990s and 2009 in this area, much of the landscape remained the same: we asked whether we could harness those similarities and differences to recreate an accurate version of the earlier LULC. The GlobCover basis and the Landsat-5 images shared neither a common spatial resolution nor time frame, But BULC-U successfully combined the labels from the coarser classification with the spatial detail of Landsat. The result was an accurate fine-scale time series that quantified the expansion of deforestation in the study area, which more than doubled in size during this time. Earth Engine directly enabled the fusion of these different data sets held in its catalog: its flexible treatment of spatial resolution, rapid prototyping, and overall processing speed permitted the development and testing of this study. Many would-be users of remote sensing data are currently limited by the need to have highly specialized knowledge to create classifications of older data. The approach shown here presents fewer obstacles to participation and allows a wide audience to create their own time series of past decades. By leveraging both the varied data catalog and the processing speed of Earth Engine, this research can contribute to the rapid advances underway in multi-temporal image classification techniques. Given Earth Engine’s power and deep catalog, this research further opens up remote sensing to a rapidly growing community of researchers and managers who need to understand the long-term dynamics of terrestrial systems.  more » « less
Award ID(s):
1739724
NSF-PAR ID:
10188785
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Remote Sensing
Volume:
12
Issue:
4
ISSN:
2072-4292
Page Range / eLocation ID:
688
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. The empirical attribution of hydrologic change presents a unique data availability challenge in terms of establishing baseline prior conditions, as one cannot go back in time to retrospectively collect the necessary data. Although global remote sensing data can alleviate this challenge, most satellite missions are too recent to capture changes that happened long ago enough to provide sufficient observations for adequate statistical inference. In that context, the 4 decades of continuous global high-resolution monitoring enabled by the Landsat missions are an unrivaled source of information. However, constructing a time series of land cover observation across Landsat missions remains a significant challenge because cloud masking and inconsistent image quality complicate the automatized interpretation of optical imagery. Focusing on the monitoring of lake water extent, we present an automatized gap-filling approach to infer the class (wet or dry) of pixels masked by clouds or sensing errors. The classification outcome of unmasked pixels is compiled across images taken on different dates to estimate the inundation frequency of each pixel, based on the assumption that different pixels are masked at different times. The inundation frequency is then used to infer the inundation status of masked pixels on individual images through supervised classification. Applied to a variety of global lakes with substantial long term or seasonal fluctuations, the approach successfully captured water extent variations obtained from in situ gauges (where applicable), or from other Landsat missions during overlapping time periods. Although sensitive to classification errors in the input imagery, the gap-filling algorithm is straightforward to implement on Google's Earth Engine platform and stands as a scalable approach to reliably monitor, and ultimately attribute, historical changes in water bodies. 
    more » « less
  2. Abstract. Multi-temporal measurements quantifying the changes to the Earth's surface are critical for understanding many natural, anthropogenic, and social processes. Researchers typically use remotely sensed Earth observation data to quantify and characterize such changes in land use and land cover (LULC). However, such data sources are limited in their availability prior to the 1980s. While an observational window of 40 to 50 years is sufficient to study most recent LULC changes, processes such as urbanization, land development, and the evolution of urban and coupled nature–human systems often operate over longer time periods covering several decades or even centuries. Thus, to quantify and better understand such processes, alternative historical–geospatial data sources are required that extend farther back in time. However, such data are rare, and processing is labor-intensive, often involving manual work. To overcome the resulting lack in quantitative knowledge of urban systems and the built environment prior to the 1980s, we leverage cadastral data with rich thematic property attribution, such as building usage and construction year. We scraped, harmonized, and processed over 12 000 000 building footprints including construction years to create a multi-faceted series of gridded surfaces, describing the evolution of human settlements in Spain from 1900 to 2020, at 100 m spatial and 5-year temporal resolution. These surfaces include measures of building density, built-up intensity, and built-up land use. We evaluated our data against a variety of data sources including remotely sensed human settlement data and land cover data, model-based historical land use depictions, and historical maps and historical aerial imagery and find high levels of agreement. This new data product, the Historical Settlement Data Compilation for Spain (HISDAC-ES), is publicly available (https://doi.org/10.6084/m9.figshare.22009643, Uhl et al., 2023a) and represents a rich source for quantitative, long-term analyses of the built environment and related processes over large spatial and temporal extents and at fine resolutions.

     
    more » « less
  3. Climate warming is occurring at an unprecedented rate in the Arctic due to regional amplification, potentially accelerating land cover change. Measuring and monitoring land cover change utilizing optical remote sensing in the Arctic has been challenging due to persistent cloud and snow cover issues and the spectrally similar land cover types. Google Earth Engine (GEE) represents a powerful tool to efficiently investigate these changes using a large repository of available optical imagery. This work examines land cover change in the Lower Yenisei River region of arctic central Siberia and exemplifies the application of GEE using the random forest classification algorithm for Landsat dense stacks spanning the 32-year period from 1985 to 2017, referencing 1641 images in total. The semiautomated methodology presented here classifies the study area on a per-pixel basis utilizing the complete Landsat record available for the region by only drawing from minimally cloud- and snow-affected pixels. Climatic changes observed within the study area’s natural environments show a statistically significant steady greening (~21,000 km2 transition from tundra to taiga) and a slight decrease (~700 km2) in the abundance of large lakes, indicative of substantial permafrost degradation. The results of this work provide an effective semiautomated classification strategy for remote sensing in permafrost regions and map products that can be applied to future regional environmental modeling of the Lower Yenisei River region. 
    more » « less
  4. Coastal erosion is one of the most significant environmental threats to coastal communities globally. In Bangladesh, coastal erosion is a regularly occurring and major destructive process, impacting both human and ecological systems at sea level. The Lower Meghna estuary, located in southern Bangladesh, is among the most vulnerable landscapes in the world to the impacts of coastal erosion. Erosion causes population displacement, loss of productive land area, loss of infrastructure and communication systems, and, most importantly, household livelihoods. With an aim to assess the impacts of historical and predicted shoreline change on different land use and land cover, this study estimated historical shoreline movement, predicted shoreline positions based on historical data, and quantified and assessed past land use and land cover change. Multi-temporal Landsat images from 1988–2021 were used to quantify historical shoreline movement and past land use and land cover. A time-series classification of historical land use and land cover (LULC) were produced to both quantify LULC change and to evaluate the utility of the future shoreline predictions for calculating amounts of lost or newly added land resources by LULC type. Our results suggest that the agricultural land is the most dominant land cover/use (76.04% of the total land loss) lost over the studied period. Our results concluded that the best performed model for predicting land loss was the 10-year time depth and 20-year time horizon model. The 10-year time depth and 20-year time horizon model was also most accurate for agricultural, forested, and inland waterbody land use/covers loss prediction. We strongly believe that our results will build a foundation for future research studying the dynamics of coastal and deltaic environments. 
    more » « less
  5. Abstract

    Changes in vegetation productivity based on normalized difference vegetation index (NDVI) have been reported from Arctic regions. Most studies use very coarse spatial resolution remote sensing data that cannot isolate landscape level factors. For example, on Yamal Peninsula in West Siberia enhanced willow growth has been linked to widespread landslide activity, but the effect of landslides on regional NDVI dynamics is unknown. Here we apply a novel satellite-based NDVI analysis to investigate the vegetation regeneration patterns of active-layer detachments following a major landslide event in 1989. We analyzed time series data of Landsat and very high-resolution (VHR) imagery from QuickBird-2 and WorldView-2 and 3 characterizing a study area of ca. 35 km2. Landsat revealed that natural regeneration of low Arctic tundra progressed rapidly during the first two decades after the landslide event. However, during the past decade, the difference between landslide shear surfaces and surrounding areas remained relatively unchanged despite the advance of vegetation succession. Time series also revealed that NDVI generally declined since 2013 within the study area. The VHR imagery allowed detection of NDVI change ‘hot-spots’ that included temporary degradation of vegetation cover, as well as new and expanding thaw slumps, which were too small to be detected from Landsat satellite data. Our study demonstrates that landslides can have pronounced and long-lasting impacts on tundra vegetation. Thermokarst landslides and associated impacts on vegetation will likely become increasingly common in NW Siberia and other Arctic regions with continued warming.

     
    more » « less