Scientific workflows are used routinely in numerous scientific domains, and Workflow Management Systems (WMSs) have been developed to orchestrate and optimize workflow executions on distributed platforms. WMSs are complex software systems that interact with complex software infrastructures. Most WMS research and development activities rely on empirical experiments conducted with full-fledged software stacks on actual hardware platforms. Such experiments, however, are limited to hardware and software infrastructures at hand and can be labor- and/or time-intensive. As a result, relying solely on real-world experiments impedes WMS research and development. An alternative is to conduct experiments in simulation. In this work we presentmore »
Bridging Concepts and Practice in eScience via Simulation-driven Engineering
The CyberInfrastructure (CI) has been the object of intensive research and development in the last decade, resulting in a rich set of abstractions and interoperable software implementations that are used in production today for supporting ongoing and breakthrough scientific discoveries. A key challenge is the development of tools and application execution frameworks that are robust in current and emerging CI configurations, and that can anticipate the needs of upcoming CI applications. This paper presents WRENCH, a framework that enables simulation-driven engineering for evaluating and developing CI application execution frameworks. WRENCH provides a set of high-level simulation abstractions that serve as building blocks for developing custom simulators. These abstractions rely on the scalable and accurate simulation models that are provided by the SimGrid simulation framework. Consequently, WRENCH makes it possible to build, with minimum software development effort, simulators that that can accurately and scalably simulate a wide spectrum of large and complex CI scenarios. These simulators can then be used to evaluate and/or compare alternate platform, system, and algorithm designs, so as to drive the development of CI solutions for current and emerging applications.
- Award ID(s):
- 1642369
- Publication Date:
- NSF-PAR ID:
- 10134276
- Journal Name:
- Workshop on Bridging from Concepts to Data and Computation for eScience (BC2DC’19), 15th International Conference on eScience (eScience)
- Page Range or eLocation-ID:
- 609-614
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Scientific workflows are used routinely in numerous scientific domains, and Workflow Management Systems (WMSs) have been developed to orchestrate and optimize workflow executions on distributed platforms. WMSs are complex software systems that interact with complex software infrastructures. Most WMS research and development activities rely on empirical experiments conducted with full-fledged software stacks on actual hardware platforms. Such experiments, however, are limited to hardware and software infrastructures at hand and can be labor- and/or time-intensive. As a result, relying solely on real-world experiments impedes WMS research and development. An alternative is to conduct experiments in simulation. In this work we presentmore »
-
1. Description of the objectives and motivation for the contribution to ECE education The demand for wireless data transmission capacity is increasing rapidly and this growth is expected to continue due to ongoing prevalence of cellular phones and new and emerging bandwidth-intensive applications that encompass high-definition video, unmanned aerial systems (UAS), intelligent transportation systems (ITS) including autonomous vehicles, and others. Meanwhile, vital military and public safety applications also depend on access to the radio frequency spectrum. To meet these demands, the US federal government is beginning to move from the proven but inefficient model of exclusive frequency assignments to amore »
-
Benchmarking is crucial for testing and validating any system, including—and perhaps especially—real-time systems. Typical real-time applications adhere to well-understood abstractions: they exhibit a periodic behavior, operate on a well-defined working set, and strive for stable response time, avoiding non-predicable factors such as page faults. Unfortunately, available benchmark suites fail to reflect key characteristics of real-time applications. Practitioners and researchers must resort to either benchmark heavily approximated real-time environments or re-engineer available benchmarks to add—if possible—the sought-after features. Additionally, the measuring and logging capabilities provided by most benchmark suites are not tailored “out-of-the-box” to real-time environments, and changing basic parameters suchmore »
-
Data-intensive applications in diverse domains, including video streaming, gaming, and health monitoring, increasingly require that mobile devices directly share data with each other. However, developing distributed data sharing functionality introduces low-level, brittle, and hard-to-maintain code into the mobile codebase. To reconcile the goals of programming convenience and performance efficiency, we present a novel middleware framework that enhances the Android platform's component model to support seamless and efficient inter-device data sharing. Our framework provides a familiar programming interface that extends the ubiquitous Android Inter-Component Communication (ICC), thus lowering the learning curve. Unlike middleware platforms based on the RPC paradigm, our programmingmore »