skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Plant defenses interact with insect enteric bacteria by initiating a leaky gut syndrome
Plants produce suites of defenses that can collectively deter and reduce herbivory. Many defenses target the insect digestive system, with some altering the protective peritrophic matrix (PM) and causing increased permeability. The PM is responsible for multiple digestive functions, including reducing infections from potential pathogenic microbes. In our study, we developed axenic and gnotobiotic methods for fall armyworm (Spodoptera frugiperda) and tested how particular members present in the gut community influence interactions with plant defenses that can alter PM permeability. We observed interactions between gut bacteria with plant resistance. Axenic insects grew more but displayed lower immune-based responses compared with those possessing Enterococcus, Klebsiella, and Enterobacter isolates from field-collected larvae. While gut bacteria reduced performance of larvae fed on plants, none of the isolates produced mortality when injected directly into the hemocoel. Our results strongly suggest that plant physical and chemical defenses not only act directly upon the insect, but also have some interplay with the herbivore’s microbiome. Combined direct and indirect, microbe-mediated assaults by maize defenses on the fall armyworm on the insect digestive and immune system reduced growth and elevated mortality in these insects. These results imply that plant–insect interactions should be considered in the context of potential mediation by the insect gut microbiome.  more » « less
Award ID(s):
1645548
PAR ID:
10134473
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Volume:
116
Issue:
32
ISSN:
1091-6490
Page Range / eLocation ID:
15991–15996
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Koinobiont endoparasitoid wasps whose larvae develop inside a host insect alter several important facets of host physiology, potentially causing cascading effects across multiple trophic levels. For instance, the hijacking of the host immune responses may have effects on how insects interact with host plants and microbial associates. However, the parasitoid regulation of insect–plant–microbiome interactions is still understudied. In this study, we used the fall armyworm (FAW), Spodoptera frugiperda , and the braconid parasitoid Cotesia marginiventris to evaluate impacts of parasitism on the gut microbiome of FAW larvae, and respective maize plant defense responses. The level of reactive oxygen species and the microbial community in larval gut underwent significant changes in response to parasitism, leading to a significant reduction of Enterococcus , while elevating the relative abundance of Pseudomonas . FAW with parasitism had lower glucose oxidase (GOX) activity in salivary glands and triggered lower defense responses in maize plants. These changes corresponded to effects on plants, as Pseudomonas inoculated larvae had lower activity of salivary GOX and triggered lower defense responses in maize plants. Our results demonstrated that parasitism had cascading effects on microbial associates across trophic levels and also highlighted that insect gut bacteria may contribute to complex interrelationships among parasitoids, herbivores, and plants. 
    more » « less
  2. Abstract Dietary generalist herbivorous insects are widespread and often occur in a variety of environments. Across their geographic range, herbivorous insects may encounter variable plant traits as they feed on high‐quality or low‐quality plants. Herbivorous insect larvae experience both bottom‐up (host plant) and top‐down (parasitoid) factors that affect survival. Host plant quality may affect larval growth and survival in that larvae feeding on low‐quality plants often suffer reduced fitness. However, herbivores on different host plants are also subject to different levels of parasitism. High‐quality plants confer stronger larval performance (higher survival, more offspring), but larvae may also face higher parasitism. In some herbivore species, diet mediates larval immune response. The generalist insect herbivore fall webworm (FW),Hyphantria cuneaDrury (Lepidoptera: Erebidae), is a moth native to North America, and its larvae have considerable variance in their performance when reared on different host plants. We investigated whether diet affects the immune response in FW larvae when they are reared on different host plant species known to vary in food quality. We measured immune response by melanization of a nylon filament. We found significant differences in immune response across host plants, indicating that diet mediates immune response in FW larvae. Our study helps elucidate the factors that cause variation in immune response in a generalist herbivore. 
    more » « less
  3. Drake, Harold L. (Ed.)
    ABSTRACT Beneficial gut microbes can facilitate insect growth on diverse diets. The omnivorous American cockroach, Periplaneta americana (Insecta: Blattodea), thrives on a diet rich in plant polysaccharides and harbors a species-rich gut microbiota responsive to host diet. Bacteroidetes are among the most abundant taxa in P. americana and other cockroaches, based on cultivation-independent gut community profiling, and these potentially polysaccharolytic bacteria may contribute to host diet processing. Eleven Bacteroidetes isolates were cultivated from P. americana digestive tracts, and phylogenomic analyses suggest that they were new Bacteroides , Dysgonomonas , Paludibacter , and Parabacteroides species distinct from those previously isolated from other insects, humans, and environmental sources. In addition, complete genomes were generated for each isolate, and polysaccharide utilization loci (PULs) and several non-PUL-associated carbohydrate-active enzyme (CAZyme)-coding genes that putatively target starch, pectin, and/or cellulose were annotated in each of the isolate genomes. Type IX secretion system (T9SS)- and CAZyme-coding genes tagged with the corresponding T9SS recognition and export C-terminal domain were observed in some isolates, suggesting that these CAZymes were deployed via non-PUL outer membrane translocons. Additionally, single-substrate growth and enzymatic assays confirmed genomic predictions that a subset of the Bacteroides and Dysgonomonas isolates could degrade starch, pectin, and/or cellulose and grow in the presence of these substrates as a single sugar source. Plant polysaccharides enrich P. americana diets, and many of these gut isolates are well equipped to exploit host dietary inputs and potentially contribute to gut community and host nutrient accessibility. IMPORTANCE Gut microbes are increasingly being recognized as critical contributors to nutrient accessibility in animals. The globally distributed omnivorous American cockroach ( Periplaneta americana ) harbors many bacterial phyla (e.g., Bacteroidetes ) that are abundant in vertebrates. P. americana thrives on a highly diverse plant-enriched diet, making this insect a rich potential source of uncharacterized polysaccharolytic bacteria. We have cultivated, completely sequenced, and functionally characterized several novel Bacteroidetes species that are endemic to the P. americana gut, and many of these isolates can degrade simple and complex polysaccharides. Cultivation and genomic characterization of these Bacteroidetes isolates further enable deeper insight into how these taxa participate in polysaccharide metabolism and, more broadly, how they affect animal health and development. 
    more » « less
  4. Vale, Pedro F (Ed.)
    Insects lack the adaptive, antibody mediated responses of vertebrates, yet they possess a robust innate immune system capable of defending themselves against pathogens. Immune priming has been observed in multiple insect species, wherein exposure to a pathogen provides protection against subsequent infections by the pathogen. Heterologous immune priming has also been described, where presence of one bacterial species provides protection against another. We determined thatRhodococcus rhodnii, a gut symbiont of the kissing bugRhodnius prolixus,induces strong heterologous immune priming, while axenic bugs lacking gut bacteria are highly susceptible to pathogens. CommensalEscherichia coliprovides less robust protection.R. rhodniimust be alive within the insect as dead bacteria do not stimulate immune priming and pathogen resistance. Removal ofR. rhodniifrom the gut reduces resistance to pathogens while restoring it to axenic bugs improves pathogen resistance, though not completely. Unlike most other examples of symbiont-mediated immune priming, we find no evidence thatR. rhodniiever leaves the gut, despite activating a potent immune response in the hemocoel and fat body.R. rhodniiandE. coliactivate both the IMD and Toll pathways indicating cross-activation of the pathways, while silencing of either pathway leads to a loss of the protective effect. Several antimicrobial peptides are induced in the fat body by presence of gut bacteria. WhenE. coliis in the gut, expression of antimicrobial peptides is often higher than whenR. rhodniiis present, whileR. rhodniiinduces proliferation of hemocytes and induces a stronger melanization response thanE. coli. Hemolymph fromR. rhodniibugs has a greater ability to convert the melanin precursor DOPA to melanization products than axenic orE. coli-harboring bugs. These results demonstrate thatR. rhodnii’sbenefits to its host extend beyond nutritional provisioning, playing an important role in the host immune system. 
    more » « less
  5. ABSTRACT In this comprehensive exploration, we delve into the pivotal role of host plants in shaping the intricate interactions between herbivorous insects and their pathogens. Recent decades have seen a surge in studies that demonstrate that host plants are crucial drivers of the interactions between insects and pathogens, providing novel insights into the direct and indirect interactions that shape tri‐trophic interactions. These studies have built on a wide range of pathogens, from viruses to bacteria, and from protozoans to fungi. We summarise these studies, and discuss the mechanisms of plant‐mediated insect resistance to infection, ranging from the toxicity of plant chemicals to pathogens to enhancement of anti‐pathogen immune responses, and modulation of the insect's microbiome. Although we provide evidence for the roles of all these mechanisms, we also point out that the majority of existing studies are phenomenological, describing patterns without addressing the underlying mechanisms. To further our understanding of these tri‐trophic interactions, we therefore urge researchers to design their studies to enable them specifically to distinguish the mechanisms by which plants affect insect susceptibility to pathogens. 
    more » « less