skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High peak power, sub-ps green emission in a passively mode locked W-cavity VECSEL
We report on the experimental results of a passively mode-locked vertical external cavity surface emitting laser (VECSEL), implemented in a W-cavity configuration, using a lithium triborate (LBO) crystal for intra-cavity second harmonic generation (SHG) at 528 nm. The W-cavity configuration allows separation of the crystal from the semiconductor saturable absorber mirror (SESAM), enabling independent control over the Gaussian beam sizes at the crystal, chip, and SESAM. This optimized cavity demonstrated a second harmonic pulse width of ~760 fs at a frequency of 465 MHz and 230 mW average output power, resulting in a peak pulse power of 580 W.  more » « less
Award ID(s):
1709918
PAR ID:
10134691
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
28
Issue:
4
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 5794
Size(s):
Article No. 5794
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a high-power tunable deep-ultraviolet (DUV) laser that uses two consecutive cavity enhanced doubling stages with LBO and CLBO crystals to produce the fourth harmonic of an amplified homebuilt external cavity diode laser. The system generates up to 2.75 W of 261.5 nm laser light with a ∼2 W stable steady-state output power and performs second harmonic generation in a largely unexplored high intensity regime in CLBO for continuous wave DUV light. We use this laser to perform fluorescence spectroscopy on theA1Π ← X1Σ+transition in a cold, slow beam of AlCl molecules and probe the A1Π|v′ = 0,J′ = 1〉 state hyperfine structure for future laser cooling and trapping experiments. This work demonstrates that the production of tunable, watt-level DUV lasers is becoming routine for a variety of wavelength-specific applications in atomic, molecular and optical physics. 
    more » « less
  2. We report cavity-enhanced second-harmonic generation and difference-frequency generation in a high-Q lithium niobate microring resonator with modal phase matching. The second-harmonic generation efficiency is measured to be 1,500% W􀀀1. 
    more » « less
  3. We demonstrate an extremely nonlinear all-dielectric metasurface that employs intersubband polaritons to achieve a second-harmonic conversion coefficient of 3 mW/W2, and second-harmonic power conversion efficiency of 0.045% at a modest pump intensity of 6.7 kW/cm2
    more » « less
  4. We created a system for the characterization of Ge2Sb2Te5 starting with a 1550 nm CW laser and utilizing second harmonic generation through a PPLN crystal in order to achieve full pulse control at 775 nm. 
    more » « less
  5. High-fidelity periodic poling over long lengths is required for robust, quasi-phase-matched second-harmonic generation using the fundamental, quasi-TE polarized waveguide modes in a thin-film lithium niobate (TFLN) waveguide. Here, a shallow-etched ridge waveguide is fabricated in x-cut magnesium oxide doped TFLN and is poled accurately over 5 mm. The high fidelity of the poling is demonstrated over long lengths using a non-destructive technique of confocal scanning second-harmonic microscopy. We report a second-harmonic conversion efficiency of up to 939 %.W−1(length-normalized conversion efficiency 3757 %.W−1.cm−2), measured at telecommunications wavelengths. The device demonstrates a narrow spectral linewidth (1 nm) and can be tuned precisely with a tuning characteristic of 0.1 nm/°C, over at least 40 °C without measurable loss of efficiency. 
    more » « less