Nanoparticles (NPs) typically display a wide distribution of different sizes in aquatic environments, yet little information is available on the impact of particle size dispersity on organismal uptake and elimination. This study investigated uptake and elimination of polyvinylpyrrolidone-coated platinum nanoparticles (PVP-PtNPs) of different sizes ( e.g. , 20.0 ± 4.8 nm, 40.5 ± 4.1 nm, and 70.8 ± 4.2 nm) by the estuarine amphipod Leptocheirus plumulosus . Accumulation and elimination were determined by measuring total Pt body burden in amphipods exposed to PtNPs using inductively coupled plasma-mass spectroscopy, as well as the mass and number PtNP body burden using single particle-ICP-MS (sp-ICP-MS). L. plumulosus accumulated Pt from PtNP suspensions of different sizes from water exposure, mostly ( e.g. , >90%) as PtNPs rather than as dissolved Pt. Mass- and number-based uptake increased with decreases in PtNP size whereas mass- and number-based elimination increased with increasing PtNP size. The residual whole-animal body burden of PtNPs after 48 h elimination increased with decreases in PtNP size, with residual body burdens approximately two-fold higher for amphipods exposed to 20 nm PtNPs than amphipods exposed to 70 nm PtNPs. PtNP influx rate ( k uw ) increased with decreasing NP size, with k uwmore »
Waveform-Agile Frequency Doubled Laser System for Optical Switching and Characterization of Phase Change Materials at Near-IR Wavelengths
We created a system for the characterization of Ge2Sb2Te5 starting with a 1550 nm CW laser and utilizing second harmonic generation through a PPLN crystal in order to achieve full pulse control at 775 nm.
- Award ID(s):
- 1710273
- Publication Date:
- NSF-PAR ID:
- 10303770
- Journal Name:
- Conference on Lasers and Electro-Optics
- Volume:
- 2020
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The attenuation of excitation power reaching the focus is the main issue that limits the depth penetration of highresolution imaging of biological tissue. The attenuation is caused by a combination of tissue scattering and absorption. Theoretical model of the effective attenuation length for in vivo mouse brain imaging has been built based on the data of the absorption of water and blood and the Mie scattering of a tissue-like phantom. Such a theoretical model has been corroborated at a number of excitation wavelengths, such as 800 nm, 1300 nm1, and 1700 nm2; however, the attenuation caused by absorption is negligible when compared to tissue scattering at all these wavelength windows. Here we performed in vivo three-photon imaging of Texas Red-stained vasculature in the same mouse brain with different excitation wavelengths, 1700 nm, 1550 nm, 1500 nm and 1450 nm. In particular, our studies include the wavelength regime where strong water absorption is present (i.e., 1450 nm), and the attenuation by water absorption is predicted to be the dominant contribution in the excitation attenuation. Based on the experimental results, we found that the effective attenuation length at 1450 nm is significantly shorter than those at 1700 nm and 1300 nm. Ourmore »
-
ABSTRACT Rigorous coupled wave analysis (RCWA) simulation was used to model the absorption in periodic arrays of GaAs(0.73)P(0.27) nanowires (NWs) on Si substrates dependent upon the diameter (D), length (L), and spacing (center-to-center distance, or pitch, P) of the NWs. Based on this study, two resonant arrangements for a top NW array sub-cell having the highest limiting short-circuit current densities (J_sc) were found to be close to D = 150 nm, P = 250 nm and D = 300 nm, P = 500 nm, both featuring the same packing density of 0.28. Even though a configuration with thinner NWs exhibited the highest J_sc = 19.46 mA/cm^2, the array with D = 350 nm and P = 500 nm provided current matching with the underlying Si sub-cell with J_sc = 18.59 mA/cm^2. Addition of a rear-side In(0.81)Ga(0.19)As nanowire array with D = 800 nm and P = 1000 nm was found to be suitable for current matching with the front NW sub-cell and middle Si. However, with thinner and sparser In(0.81)Ga(0.19)As NWs with D = 700 nm and P = 1000 nm, the J_scof the bottom sub-cell was increased from 17.35 mA/cm^2 to 18.76 mA/cm^2 using a planar metallic back surfacemore »
-
Introduction: Humans are intentionally exposed to gold nanoparticles (AuNPs) where they are used in variety of biomedical applications as imaging and drug delivery agents as well as diagnostic and therapeutic agents currently in clinic and in a variety of upcoming clinical trials. Consequently, it is critical that we gain a better understanding of how physiochemical properties such as size, shape, and surface chemistry drive cellular uptake and AuNP toxicity in vivo. Understanding and being able to manipulate these physiochemical properties will allow for the production of safer and more efficacious use of AuNPs in biomedical applications. Methods and Materials: Here, AuNPs of three sizes, 5 nm, 10 nm, and 20 nm, were coated with a lipid bilayer composed of sodium oleate, hydrogenated phosphatidylcholine, and hexanethiol. To understand how the physical features of AuNPs influence uptake through cellular membranes, sum frequency generation (SFG) was utilized to assess the interactions of the AuNPs with a biomimetic lipid monolayer composed of a deuterated phospholipid 1.2-dipalmitoyl-d62-sn-glycero-3-phosphocholine (dDPPC). Results and Discussion: SFG measurements showed that 5 nm and 10 nm AuNPs are able to phase into the lipid monolayer with very little energetic cost, whereas, the 20 nm AuNPs warped the membrane conforming it tomore »
-
Abstract The ongoing COVID-19 global pandemic has necessitated evaluating various disinfection technologies for reducing viral transmission in public settings. Ultraviolet (UV) radiation can inactivate pathogens and viruses but more insight is needed into the performance of different UV wavelengths and their applications. We observed greater than a 3-log reduction of SARS-CoV-2 infectivity with a dose of 12.5 mJ/cm 2 of 254 nm UV light when the viruses were suspended in PBS, while a dose of 25 mJ/cm 2 was necessary to achieve a similar reduction when they were in an EMEM culture medium containing 2%(v/v) FBS, highlighting the critical effect of media in which the virus is suspended, given that SARS-CoV-2 is always aerosolized when airborne or deposited on a surface. It was found that SARS-CoV-2 susceptibility (a measure of the effectiveness of the UV light) in a buffer such as PBS was 4.4-fold greater than that in a cell culture medium. Furthermore, we discovered the attenuation of UVC disinfection by amino acids, vitamins, and niacinamide, highlighting the importance of determining UVC dosages under a condition close to aerosols that wrap the viruses. We developed a disinfection model to determine the effect of the environment on UVC effectiveness with three different wavelengths, 222 nm,more »