A bstract In this work, we use Ising chain and Kitaev chain to check the validity of an earlier proposal in arXiv:2011.02859 that enriched fusion (higher) categories provide a unified categorical description of all gapped/gapless quantum liquid phases, including symmetry-breaking phases, topological orders, SPT/SET orders and CFT-type gapless quantum phases. In particular, we show explicitly that, in each gapped phase realized by these two models, the spacetime observables form a fusion category enriched in a braided fusion category such that its monoidal center is trivial. We also study the categorical descriptions of the boundaries of these models. In the end, we obtain a classification of and the categorical descriptions of all 1-dimensional (spatial dimension) gapped quantum phases with a bosonic/fermionic finite onsite symmetry.
more »
« less
Universal entanglement signatures of foliated fracton phases
Fracton models exhibit a variety of exotic properties and lie beyondthe conventional framework of gapped topological order. In , wegeneralized the notion of gapped phase to one of foliatedfracton phase by allowing the addition of layers of gappedtwo-dimensional resources in the adiabatic evolution between gappedthree-dimensional models. Moreover, we showed that the X-cube model is afixed point of one such phase. In this paper, according to thisdefinition, we look for universal properties of such phases which remaininvariant throughout the entire phase. We propose multi-partiteentanglement quantities, generalizing the proposal of topologicalentanglement entropy designed for conventional topological phases. Wepresent arguments for the universality of these quantities and show thatthey attain non-zero constant value in non-trivial foliated fractonphases.
more »
« less
- Award ID(s):
- 1654340
- PAR ID:
- 10134737
- Date Published:
- Journal Name:
- SciPost Physics
- Volume:
- 6
- Issue:
- 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We investigate the interplay of generalized global symmetries in 2+1 dimensions by introducing a lattice model that couples a ZN clock model to a ZN gauge theory via a topological interaction. This coupling binds the charges of one symmetry to the disorder operators of the other, and when these composite objects condense, they give rise to emergent generalized symmetries with mixed ’t Hooft anomalies. These anomalies result in phases with ordinary symmetry breaking, topological order, and symmetry-protected topological (SPT) order, where the different types of order are not independent but intimately related. We further explore the gapped boundary states of these exotic phases and develop theories for phase transitions between them. Additionally, we extend our lattice model to incorporate a non-invertible global symmetry, which can be spontaneously broken, leading to domain walls with non-trivial fusion rules.more » « less
-
We propose and prove a family of generalized Lieb-Schultz-Mattis~(LSM) theorems for symmetry protected topological~(SPT) phases on boson/spin models in any dimensions.The ``conventional'' LSM theorem, applicable to e.g. any translation invariant system with an odd number of spin-1/2 particles per unit cell, forbids a symmetric short-range-entangled ground state in such a system.Here we focus on systems with no LSM anomaly, where global/crystalline symmetries and fractional spins within the unit cell ensure that any symmetric SRE ground state must be a non-trivial SPT phase with anomalous boundary excitations.Depending on models, they can be either strong or ``higher-order'' crystalline SPT phases, characterized by non-trivial surface/hinge/corner states.Furthermore, given the symmetry group and the spatial assignment of fractional spins, we are able to determine all possible SPT phases for a symmetric ground state, using the real space construction for SPT phases based on the spectral sequence of cohomology theory.We provide examples in one, two and three spatial dimensions, and discuss possible physical realization of these SPT phases based on condensation of topological excitations in fractionalized phases.more » « less
-
This paper is concerned with the physics of parametrized gapped quantum many-body systems, which can be viewed as a generalization of conventional topological phases of matter. In such systems, rather than considering a single Hamiltonian, one considers a family of Hamiltonians that depend continuously on some parameters. After discussing the notion of phases of parametrized systems, we formulate a bulk-boundary correspondence for an important bulk quantity, the Kapustin-Spodyneiko higher Berry curvature, first in one spatial dimension and then in arbitrary dimension. This clarifies the physical interpretation of the higher Berry curvature, which in one spatial dimension is a flow of (ordinary) Berry curvature. In 𝑑 dimensions, the higher Berry curvature is a flow of (𝑑−1)-dimensional higher Berry curvature. Based on this, we discuss one-dimensional systems that pump Chern number to/from spatial boundaries, resulting in anomalous boundary modes featuring isolated Weyl points. In higher dimensions, there are pumps of the analogous quantized invariants obtained by integrating the higher Berry curvature. We also discuss the consequences for parametrized systems of Kitaev's proposal that invertible phases are classified by a generalized cohomology theory, and emphasize the role of the suspension isomorphism in generating new examples of parametrized systems from known invertible phases. Finally, we present a pair of general quantum pumping constructions, based on physical pictures introduced by Kitaev, which take as input a 𝑑-dimensional parametrized system, and produce new (𝑑+1)-dimensional parametrized systems. These constructions are useful for generating examples, and we conjecture that one of the constructions realizes the suspension isomorphism in a generalized cohomology theory of invertible phases.more » « less
-
The properties of topological systems are inherently tied to their dimensionality. Indeed, higher-dimensional periodic systems exhibit topological phases not shared by their lower-dimensional counterparts. On the other hand, aperiodic arrays in lower-dimensional systems (e.g., the Harper model) have been successfully employed to emulate higher-dimensional physics. This raises a general question on the possibility of extended topological classification in lower dimensions, and whether the topological invariants of higher-dimensional periodic systems may assume a different meaning in their lower-dimensional aperiodic counterparts. Here, we demonstrate that, indeed, for a topological system in higher dimensions one can construct a one-dimensional (1D) deterministic aperiodic counterpart which retains its spectrum and topological characteristics. We consider a four-dimensional (4D) quantized hexadecapole higher-order topological insulator (HOTI) which supports topological corner modes. We apply the Lanczos transformation and map it onto an equivalent deterministic aperiodic 1D array (DAA) emulating 4D HOTI in 1D. We observe topological zero-energy zero-dimensional (0D) states of the DAA—the direct counterparts of corner states in 4D HOTI and the hallmark of the multipole topological phase, which is meaningless in lower dimensions. To explain this paradox, we show that higher-dimension invariant, the multipole polarization, retains its quantization in the DAA, yet changes its meaning by becoming a nonlocal correlator in the 1D system. By introducing nonlocal topological phases of DAAs, our discovery opens a direction in topological physics. It also unveils opportunities to engineer topological states in aperiodic systems and paves the path to application of resonances associates with such states protected by nonlocal symmetries.more » « less
An official website of the United States government

