skip to main content


Title: Reduction of Bias from Parameter Variance in Geophysical Data Estimation: Method and Application to Ice Water Content and Sedimentation Flux Estimated from Lidar

This paper addresses issues of statistical misrepresentation of the a priori parameters (henceforth called ancillary parameters) used in geophysical data estimation. Parameterizations using ancillary data are frequently needed to derive geophysical data of interest from remote measurements. Empirical fits to the ancillary data that do not preserve the distribution of such data may induce substantial bias. A semianalytical averaging approach based on Taylor expansion is presented to improve estimated cirrus ice water content and sedimentation flux for a range of volume extinction coefficients retrieved from spaceborne lidar observations by CALIOP combined with the estimated distribution of ancillary data from in situ aircraft measurements of ice particle microphysical parameters and temperature. It is shown that, given an idealized distribution of input parameters, the approach performs well against Monte Carlo benchmark predictions. Using examples with idealized distributions at the mean temperature for the tropics at 15 km, it is estimated that the commonly neglected variance observed in in situ measurements of effective diameters may produce a worst-case estimation bias spanning up to a factor of 2. For ice sedimentation flux, a similar variance in particle size distributions and extinctions produces a worst-case estimation bias of a factor of 9. The value of the bias is found to be mostly set by the correlation coefficient between extinction and ice effective diameter, which in this test ranged between all possible values. Systematic reporting of variances and covariances in the ancillary data and between data and observed quantities would allow for more accurate observational estimates.

 
more » « less
Award ID(s):
1660538 1743753
NSF-PAR ID:
10134944
Author(s) / Creator(s):
 ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
77
Issue:
3
ISSN:
0022-4928
Page Range / eLocation ID:
p. 835-857
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    As part of the analysis following the Seeded and Natural Orographic Wintertime Storms (SNOWIE) project, the ice water content (IWC) in ice and mixed-phase clouds is retrieved from airborne Wyoming Cloud Radar (WCR) measurements aboard the University of Wyoming King Air (UWKA), which has a suite of integrated in situ IWC, optical array probes, and remote sensing measurements, and it provides a unique dataset for this algorithm development and evaluation. A sensitivity study with different idealized ice particle habits shows that the retrieved IWC with aggregate ice particle habit agrees the best with the in situ measurement, especially in ice or ice-dominated mixed-phase clouds with a correlation coefficient (rr) of 0.91 and a bias of close to 0. For mixed-phase clouds with ice fraction ratio less than 0.8, the variances of IWC estimates increase (rr = 0.76) and the retrieved mean IWC is larger than in situ IWC by a factor of 2. This is found to be related to the uncertainty of in situ measurements, the large cloud inhomogeneity, and the retrieval assumption uncertainty. The simulated reflectivity Ze and IWC relationships assuming three idealized ice particle habits and measured particle size distributions show that hexagonal columns with the same Ze have a lower IWC than aggregates, whose Ze–IWC relation is more consistent with the observed WCR Ze and in situ IWC relation in those clouds. The 2D stereo probe (2DS) images also indicate that ice particle habit transition occurs in orographic mixed-phase clouds; hence, the retrieved IWC assuming modified gamma particle size distribution (PSD) of aggregate particles tends to have a greater bias in this kind of clouds.

     
    more » « less
  2. Abstract

    This study focuses on methods to estimate dry marine aerosol surface area (SA) from bulk optical measurements. Aerosol SA is used in many models' ice nucleating particle (INP) parameterizations, as well as influencing particle light scattering, hygroscopic growth, and reactivity, but direct observations are scarce in the Southern Ocean (SO). Two campaigns jointly conducted in austral summer 2018 provided co‐located measurements of aerosol SA from particle size distributions and lidar to evaluate SA estimation methods in this region. Mie theory calculations based on measured size distributions were used to test a proposed approximation for dry aerosol SA, which relies on estimating effective scattering efficiency (Q) as a function of Ångström exponent (å). For distributions with dryå< 1,Q = 2 was found to be a good approximation within ±50%, but for distributions with dryå> 1, an assumption ofQ = 3 as in some prior studies underestimates dry aerosol SA by a factor of 2 or more. We propose a new relationship between dryåandQ, which can be used for −0.2 <å< 2, and suggestå = 0.8 as the cutoff between primary and secondary marine aerosol‐dominated distributions. Application of a published methodology to retrieve dry marine aerosol SA from lidar extinction profiles overestimated aerosol SA by a factor of 3–5 during these campaigns. Using Microtops aerosol optical thickness measurements, we derive alternative lidar conversion parameters from our observations, applicable to marine aerosol over the SO.

     
    more » « less
  3. Abstract This study evaluates ice particle size distribution and aspect ratio φ Multi-Radar Multi-Sensor (MRMS) dual-polarization radar retrievals through a direct comparison with two legs of observational aircraft data obtained during a winter storm case from the Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) campaign. In situ cloud probes, satellite, and MRMS observations illustrate that the often-observed K dp and Z DR enhancement regions in the dendritic growth layer can either indicate a local number concentration increase of dry ice particles or the presence of ice particles mixed with a significant number of supercooled liquid droplets. Relative to in situ measurements, MRMS retrievals on average underestimated mean volume diameters by 50% and overestimated number concentrations by over 100%. IWC retrievals using Z DR and K dp within the dendritic growth layer were minimally biased relative to in situ calculations where retrievals yielded −2% median relative error for the entire aircraft leg. Incorporating φ retrievals decreased both the magnitude and spread of polarimetric retrievals below the dendritic growth layer. While φ radar retrievals suggest that observed dendritic growth layer particles were nonspherical (0.1 ≤ φ ≤ 0.2), in situ projected aspect ratios, idealized numerical simulations, and habit classifications from cloud probe images suggest that the population mean φ was generally much higher. Coordinated aircraft radar reflectivity with in situ observations suggests that the MRMS systematically underestimated reflectivity and could not resolve local peaks in mean volume diameter sizes. These results highlight the need to consider particle assumptions and radar limitations when performing retrievals. significance statement Developing snow is often detectable using weather radars. Meteorologists combine these radar measurements with mathematical equations to study how snow forms in order to determine how much snow will fall. This study evaluates current methods for estimating the total number and mass, sizes, and shapes of snowflakes from radar using images of individual snowflakes taken during two aircraft legs. Radar estimates of snowflake properties were most consistent with aircraft data inside regions with prominent radar signatures. However, radar estimates of snowflake shapes were not consistent with observed shapes estimated from the snowflake images. Although additional research is needed, these results bolster understanding of snow-growth physics and uncertainties between radar measurements and snow production that can improve future snowfall forecasting. 
    more » « less
  4. Abstract

    In the D‐region, the ionization rate cannot be detected directly with any known measurement technique, therefore it must be estimated. Starting from space‐based measurements of precipitating particle flux, we estimate the ionization rate in the atmosphere using the Electron Precipitation Monte Carlo transport method. This ionization rate is used to calculate the expected electron density in the D‐region with the Glukhov‐Pasko‐Inan five species (GPI5) atmospheric chemistry model. We then compare the simulated electron density with that measured by the Poker Flat Incoherent Scatter Radar (PFISR). From ground‐based radar measurements of electron density enhancements due to sub‐relativistic and relativistic electron precipitation, we present a method to extract the ionization rate altitude profiles using inverse theory. We use this estimation of ionization rate to find the energy distribution of the precipitating particles. With this inverse method, we are able to link ground measurements of electron density to the precipitating flux in a time dependent manner and with uncertainty in the inverted parameters. The method was tested on synthetic data and applied to specific PFISR data sets. The method is able to retrieve the ionization rate altitude profiles that, when forward modeled, return the expected electron densities within ∼7% error as compared to the PFISR data. For the case presented here, the arbitrary energy distribution inversion results are comparable in magnitude and shape to those presented in Turunen et al. (2016,https://doi.org/10.1002/2016jd025015) for the inversion of a single event of pulsating aurora observed by EISCAT.

     
    more » « less
  5. Abstract

    Profiles of stratospheric aerosol size distributions have been measured using balloon‐bornein situoptical particle counters, from Laramie, Wyoming (41°N) since 1971. In 2019, this measurement record transitioned to the Laboratory for Atmospheric and Space Physics (LASP) in Boulder, Colorado (40°N). The new LASP Optical Particle Counter (LOPC), the fourth generation of instruments used for this record, is smaller and lighter (2 kg) than prior instruments, measures aerosols with diameters ≥0.3–30 μm in up to 450 size bins, with a flow rate of 20 L min−1. The improved size resolution enables the complete measurement of size distributions, and calculation of aerosol extinction without fittinga prioridistribution shapes. The higher flow provides the sensitivity required to measure super‐micron particles in the stratosphere. The LOPC has been validated against prior Wyoming OPCs, through joint flights, laboratory comparisons, and statistical comparisons with the Wyoming record. The agreement between instruments is generally within the measurement uncertainty of ±10%–20% in sizing and ±10% in concentration, and within ±40% for calculated aerosol moments. The record is being continued with balloon soundings every 2 months from Colorado, coordinated with measurements of aerosol extinction from the SAGE III instrument on the International Space Station. Comparisons of aerosol extinction from the remote andin situplatforms have shown good agreement in the stratosphere, particularly for wavelengths <755 nm and altitudes <25 km. For extinction wavelengths ≥1,021 nm and altitudes above 25 km SAGE III/International Space Station extinction has a low bias relative to thein situmeasurements, yet still within the ±40% uncertainty.

     
    more » « less