skip to main content

Title: Reduction of Bias from Parameter Variance in Geophysical Data Estimation: Method and Application to Ice Water Content and Sedimentation Flux Estimated from Lidar

This paper addresses issues of statistical misrepresentation of the a priori parameters (henceforth called ancillary parameters) used in geophysical data estimation. Parameterizations using ancillary data are frequently needed to derive geophysical data of interest from remote measurements. Empirical fits to the ancillary data that do not preserve the distribution of such data may induce substantial bias. A semianalytical averaging approach based on Taylor expansion is presented to improve estimated cirrus ice water content and sedimentation flux for a range of volume extinction coefficients retrieved from spaceborne lidar observations by CALIOP combined with the estimated distribution of ancillary data from in situ aircraft measurements of ice particle microphysical parameters and temperature. It is shown that, given an idealized distribution of input parameters, the approach performs well against Monte Carlo benchmark predictions. Using examples with idealized distributions at the mean temperature for the tropics at 15 km, it is estimated that the commonly neglected variance observed in in situ measurements of effective diameters may produce a worst-case estimation bias spanning up to a factor of 2. For ice sedimentation flux, a similar variance in particle size distributions and extinctions produces a worst-case estimation bias of a factor of 9. The value of more » the bias is found to be mostly set by the correlation coefficient between extinction and ice effective diameter, which in this test ranged between all possible values. Systematic reporting of variances and covariances in the ancillary data and between data and observed quantities would allow for more accurate observational estimates.

« less
Award ID(s):
1660538 1743753
Publication Date:
Journal Name:
Journal of the Atmospheric Sciences
Page Range or eLocation-ID:
p. 835-857
American Meteorological Society
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    As part of the analysis following the Seeded and Natural Orographic Wintertime Storms (SNOWIE) project, the ice water content (IWC) in ice and mixed-phase clouds is retrieved from airborne Wyoming Cloud Radar (WCR) measurements aboard the University of Wyoming King Air (UWKA), which has a suite of integrated in situ IWC, optical array probes, and remote sensing measurements, and it provides a unique dataset for this algorithm development and evaluation. A sensitivity study with different idealized ice particle habits shows that the retrieved IWC with aggregate ice particle habit agrees the best with the in situ measurement, especially in ice or ice-dominated mixed-phase clouds with a correlation coefficient (rr) of 0.91 and a bias of close to 0. For mixed-phase clouds with ice fraction ratio less than 0.8, the variances of IWC estimates increase (rr = 0.76) and the retrieved mean IWC is larger than in situ IWC by a factor of 2. This is found to be related to the uncertainty of in situ measurements, the large cloud inhomogeneity, and the retrieval assumption uncertainty. The simulated reflectivity Ze and IWC relationships assuming three idealized ice particle habits and measured particle size distributions show that hexagonal columns with themore »same Ze have a lower IWC than aggregates, whose Ze–IWC relation is more consistent with the observed WCR Ze and in situ IWC relation in those clouds. The 2D stereo probe (2DS) images also indicate that ice particle habit transition occurs in orographic mixed-phase clouds; hence, the retrieved IWC assuming modified gamma particle size distribution (PSD) of aggregate particles tends to have a greater bias in this kind of clouds.

    « less
  2. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>
  3. Abstract. A tethered-balloon system (TBS) has been developed and is beingoperated by Sandia National Laboratories (SNL) on behalf of the U.S.Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) UserFacility in order to collect in situ atmospheric measurements withinmixed-phase Arctic clouds. Periodic tethered-balloon flights have beenconducted since 2015 within restricted airspace at ARM's Advanced MobileFacility 3 (AMF3) in Oliktok Point, Alaska, as part of the AALCO (AerialAssessment of Liquid in Clouds at Oliktok), ERASMUS (Evaluation of RoutineAtmospheric Sounding Measurements using Unmanned Systems), and POPEYE(Profiling at Oliktok Point to Enhance YOPP Experiments) field campaigns. Thetethered-balloon system uses helium-filled 34 m3 helikites and 79 and104 m3 aerostats to suspend instrumentation that is used to measureaerosol particle size distributions, temperature, horizontal wind, pressure,relative humidity, turbulence, and cloud particle properties and tocalibrate ground-based remote sensing instruments. Supercooled liquid water content (SLWC) sondes using the vibrating-wireprinciple, developed by Anasphere Inc., were operated at Oliktok Point atmultiple altitudes on the TBS within mixed-phase clouds for over 200 h.Sonde-collected SLWC data were compared with liquid water content derivedfrom a microwave radiometer, Ka-band ARM zenith radar, and ceilometer at the AMF3, as well as liquid water content derived from AMF3 radiosonde flights. The in situ data collected by the Anasphere sensors were also comparedmore »with data collected simultaneously by an alternative SLWC sensor developed at the University of Reading, UK; both vibrating-wire instruments were typically observed to shed their ice quickly upon exiting the cloud or reaching maximum ice loading. Temperature sensing measurements distributed with fiber optic tethered balloons were also compared with AMF3 radiosonde temperature measurements. Combined, the results indicate that TBS-distributedtemperature sensing and supercooled liquid water measurements are inreasonably good agreement with remote sensing and radiosonde-basedmeasurements of both properties. From these measurements and sensorevaluations, tethered-balloon flights are shown to offer an effective methodof collecting data to inform and constrain numerical models, calibrate andvalidate remote sensing instruments, and characterize the flight environmentof unmanned aircraft, circumventing the difficulties of in-cloud unmanned aircraft flights such as limited flight time and in-flight icing.« less
  4. Abstract

    The extent to which the eddy statistics of the Martian atmosphere can be inferred from the mean state and highly simplified assumptions about diabatic and frictional processes is investigated using an idealized general circulation model (GCM) with Newtonian relaxation thermal forcing. An iterative technique, adapted from previous terrestrial studies, is used to generate radiative equilibrium temperatures such that the three-dimensional time-mean temperature fields of the idealized model match means computed from the Mars Analysis Correction Data Assimilation (MACDA). Focusing on a period of strong Northern Hemisphere eddy activity prior to winter solstice, it is found that the idealized model reproduces some key features of the spatial patterns of the MACDA eddy temperature variance and kinetic energy fields. The idealized model can also simulate aspects of MACDA’s seasonal cycle of spatial patterns of low-level eddy meridional wind and temperature variances. The most notable weakness of the model is its eddy amplitudes—both their absolute values and seasonal variations are quite unrealistic, for reasons unclear. The idealized model was also run with a mean flow based on output from the Geophysical Fluid Dynamics Laboratory (GFDL) full-physics Mars GCM. The idealized model captures the difference in mean flows between MACDA and the GFDLmore »Mars GCM and reproduces a bias in the more complex model’s eddy zonal wavenumber distribution. This implies that the mean flow is an important influence on transient eddy wavenumbers and that improving the GFDL Mars GCM’s mean flow would make its eddy scales more realistic.

    « less
  5. Abstract. Cirrus cloud radiative effects are largely affected byice microphysical properties, including ice water content (IWC), ice crystalnumber concentration (Ni) and mean diameter (Di). These characteristics varysignificantly due to thermodynamic, dynamical and aerosol conditions. Inthis work, a global-scale observation dataset is used to examine regionalvariations of cirrus cloud microphysical properties, as well as several keycontrolling factors, i.e., temperature, relative humidity with respect toice (RHi), vertical velocity (w) and aerosol number concentrations (Na).Results are compared with simulations from the National Center forAtmospheric Research (NCAR) Community Atmosphere Model version 6 (CAM6).Observed and simulated ice mass and number concentrations are constrained to≥62.5 µm to reduce potential uncertainty from shattered ice indata collection. The differences between simulations and observations arefound to vary with latitude and temperature. Comparing with averagedobservations at ∼100 km horizontal scale, simulations arefound to underestimate (overestimate) IWC by a factor of 3–10 in theNorthern (Southern) Hemisphere. Simulated Ni is overestimated in mostregions except the Northern Hemisphere midlatitudes. Simulated Di isunderestimated by a factor of 2, especially for warmer conditions(−50 to −40 ∘C), possibly due tomisrepresentation of ice particle growth/sedimentation. For RHi effects, thefrequency and magnitude of ice supersaturation are underestimated insimulations for clear-sky conditions. The simulated IWC and Ni show bimodaldistributions with maximum valuesmore »at 100 % and 80 % RHi, differing fromthe unimodal distributions that peak at 100 % in the observations. For weffects, both observations and simulations show variances of w (σw) decreasing from the tropics to polar regions, but simulations show muchhigher σw for the in-cloud condition than the clear-sky condition.Compared with observations, simulations show weaker aerosol indirect effectswith a smaller increase of IWC and Di at higher Na. These findings provide anobservation-based guideline for improving simulated ice microphysicalproperties and their relationships with key controlling factors at variousgeographical locations.« less