skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Palladium/cobalt nanowires with improved hydrogen sensing stability at ultra-low temperatures
The metallic dopants in palladium (Pd) sensing materials enable modification of the d-band center of Pd, which is expected to tune the α–β phase transitions of the PdH x intermediate, thus improve the sensing stability to hydrogen. Here, the boosted hydrogen-sensing stability at ultra-low temperatures has been achieved with palladium/cobalt nanowires (PdCo NWs) as the sensing material. The various Co contents in PdCo NWs were modulated via AAO-template-confined electrodeposition. The temperature-dependent sensing evaluations were performed in 0.1–3 v/v% hydrogen. Such sensors integrated with PdCo NWs are able to stably detect hydrogen as low as 0.1 v/v%, even when the temperature is lowered to 273 K. In addition, the critical temperatures of “reverse sensing behavior” of the PdCo NWs (Pd 82 Co 18 : T c = 194 K; Pd 63 Co 37 : T c = 180 K; Pd 33 Co 67 : T c = 184 K) are observed much lower than that of pristine Pd NWs ( T c = 287 K). Specifically, the Pd 63 Co 37 NWs (∼37 at% Co content) sensor shows outstanding stability of sensing hydrogen against α–β phase transitions within the wide temperature range of 180–388 K, which is attributed to both the electronic interactions between Pd and Co and the lattice compression strain caused by Co dopants. Moreover, the “reverse sensing behavior” of the PdCo NWs is explicitly interpreted using the α–β phase transition model.  more » « less
Award ID(s):
1736093
PAR ID:
10134954
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Nanoscale
Volume:
11
Issue:
44
ISSN:
2040-3364
Page Range / eLocation ID:
21074 to 21080
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We describe experimental approaches to real time examination of the microstructural evolution of Ti 6%Al 4%V upon cooling from above the beta transus (~995 °C) while imaging in the scanning electron microscope. Ti 6%Al 4%V is a two phase, α+β titanium alloy with high strength and corrosion resistance. The β →α transformation on cooling can give rise to different microstructures and properties through various thermal treatments. Fully lamellar microstructures, bi-modal microstructures, and equiaxed microstructures can each be obtained by accessing different cooling rates upon the final treatment above the beta temperature, each resulting in uniquely enhanced material properties. Utilizing the capabilities of a heating/ tensile stage developed by Kammrath & Weiss Inc., are able to apply real-time imaging techniques in the scanning electron microscope to monitor the development of the microstructure. Annealing temperatures up to 1100 °C are attainable, with cooling rates ranging from 0.1 ° C per second to 3.3 °C per second. This has allowed us to directly observe the formation of lamellae at different annealing temperature/ cooling rate combinations to determine the lamellar microstructure width, separation, and colony size. 
    more » « less
  2. The temperature-dependent behavior of on/off ratio and reverse recovery time in vertical heterojunction p-NiO/β n-Ga2O/n+ Ga2O3 rectifiers was investigated over the temperature range of 25–300 °C. The device characteristics in forward bias showed evidence of multiple current transport mechanisms and were found to be dependent on the applied bias voltages and temperatures. The on–off ratio decreased from 3 × 106 at 25 °C to 2.5 × 104 at 300 °C for switching to 100 V reverse bias. For 200 μm diameter rectifiers, the reverse recovery time of ∼21 ns was independent of temperature, with the Irr monotonically increasing from 15.1 mA at 25 °C to 25.6 mA at 250 °C and dropping at 300 °C. The dI/dt increased from 4.2 to 4.6 A/μs over this temperature range. The turn-on voltage decreased from 2.9 V at 25 °C to 1.7 V at 300 °C. The temperature coefficient of breakdown voltage was negative and does not support the presence of avalanche breakdown in NiO/β-Ga2O3 rectifiers. The energy loss during switching from 100 V was in the range 23–31 μJ over the temperature range investigated. 
    more » « less
  3. Growing a thick high-quality epitaxial layer on the β-Ga2O3 substrate is crucial in commercializing β-Ga2O3 devices. Metal organic chemical vapor deposition (MOCVD) is also well-established for the large-scale commercial growth of β-Ga2O3 and related heterostructures. This paper presents a systematic study of the Schottky barrier diodes fabricated on two different Si-doped homoepitaxial β-Ga2O3 thin films grown on Sn-doped (001) and (010) β-Ga2O3 substrates by MOCVD. X-ray diffraction analysis of the MOCVD-grown sample, room temperature current density–voltage data for different Schottky diodes, and C–V measurements are presented. Diode characteristics, such as ideality factor, barrier height, specific on-resistance, and breakdown voltage, are studied. Temperature dependence (170–360 K) of the ideality factor, barrier height, and Poole–Frenkel reverse leakage mechanism are also analyzed from the J–V–T characteristics of the fabricated Schottky diodes. 
    more » « less
  4. 2-Pyridone ligand-facilitated palladium-catalyzed direct C–H bond functionalization via the transient directing group strategy has become an attractive topic. Here, we report a Pd-catalyzed direct β-C(sp3)–H arylation reaction of tertiary aliphatic aldehydes by using an α-amino acid as a transient directing group in combination with a 2-pyridone ligand. 
    more » « less
  5. The search for room temperature superconductivity has accelerated in the last few years driven by experimentally accessible theoretical predictions that indicated alloying dense hydrogen with other elements could produce conventional superconductivity at high temperatures and pressures. These predictions helped inform the synthesis of simple binary hydrides that culminated in the discovery of the superhydride LaH 10 with a superconducting transition temperature T c of 260 K at 180 GPa. We have now successfully synthesized a metallic La-based superhydride with an initial T c of 294 K. When subjected to subsequent thermal excursions that promoted a chemical reaction to a higher order system, the T c onset was driven irreversibly to 556 K. X-ray characterization confirmed the formation of a distorted LaH 10 based backbone that suggests the formation of ternary or quaternary compounds with substitution at the La and/or H sites. The results provide evidence for hot superconductivity, aligning with recent predictions for higher order hydrides under pressure. 
    more » « less