Natural selection has evidently mediated many species characteristics relevant to the evolution of learning, including longevity, length of the juvenile period, social organization, timing of cognitive and motor development, and age-related shifts in behavioural propensities such as activity level, flexibility in problem-solving and motivation to seek new information. Longitudinal studies of wild populations can document such changes in behavioural propensities, providing critical information about the contexts in which learning strategies develop, in environments similar to those in which learning strategies evolved. The Lomas Barbudal Monkey Project provides developmental data for the white-faced capuchin, Cebus capucinus , a species that has converged with humans regarding many life-history and behavioural characteristics. In this dataset, focused primarily on learned aspects of foraging behaviour, younger capuchins are more active overall, more curious and opportunistic, and more prone to inventing new investigative and foraging-related behaviours. Younger individuals more often seek social information by watching other foragers (especially older foragers). Younger individuals are more creative, playful and inventive, and less neophobic, exhibiting a wider range of behaviours when engaged in extractive foraging. Whereas adults more often stick with old solutions, younger individuals often incorporate recently acquired experience (both social and asocial) when foraging. This article is part of the theme issue ‘Life history and learning: how childhood, caregiving and old age shape cognition and culture in humans and other animals'.
more »
« less
Uncertainty drives deviations in normative foraging decision strategies
Nearly all animals forage to acquire energy for survival through efficient search and resource harvesting. Patch exploitation is a canonical foraging behaviour, but there is a need for more tractable and understandable mathematical models describing how foragers deal with uncertainty. To provide such a treatment, we develop a normative theory of patch foraging decisions, proposing mechanisms by which foraging behaviours emerge in the face of uncertainty. Our model foragers statistically and sequentially infer patch resource yields using Bayesian updating based on their resource encounter history. A decision to leave a patch is triggered when the certainty of the patch type or the estimated yield of the patch falls below a threshold. The time scale over which uncertainty in resource availability persists strongly impacts behavioural variables like patch residence times and decision rules determining patch departures. When patch depletion is slow, as in habitat selection, departures are characterized by a reduction of uncertainty, suggesting that the forager resides in a low-yielding patch. Uncertainty leads patch-exploiting foragers to overharvest (underharvest) patches with initially low (high) resource yields in comparison with predictions of the marginal value theorem. These results extend optimal foraging theory and motivate a variety of behavioural experiments investigating patch foraging behaviour.
more »
« less
- Award ID(s):
- 1853630
- PAR ID:
- 10375765
- Date Published:
- Journal Name:
- Journal of The Royal Society Interface
- Volume:
- 18
- Issue:
- 180
- ISSN:
- 1742-5662
- Page Range / eLocation ID:
- 20210337
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Differences among groups in collective behavior may arise from responses that all group members share, or instead from differences in the distribution of individuals of particular types. We examined whether the collective regulation of foraging behavior in colonies of the desert red harvester ant ( Pogonomyrmex barbatus ) depends on individual differences among foragers. Foragers lose water while searching for seeds in hot, dry conditions, so colonies regulate foraging activity in response to humidity. In the summer, foraging activity begins in the early morning when humidity is high, and ends at midday when humidity is low. We investigated whether individual foragers within a colony differ in the decision whether to leave the nest on their next foraging trip as humidity decreases, by tracking the foraging trips of marked individuals. We found that individuals did not differ in response to current humidity. No ants were consistently more likely than others to stop foraging when humidity is low. Each day there is a skewed distribution of trip number: only a few individuals make many trips, but most individuals make few trips. We found that from one day to the next, individual foragers do not show any consistent tendency to make a similar number of trips. These results suggest that the differences among colonies in response to humidity, found in previous work, are due to behavioral responses to current humidity that all workers in a colony share, rather than to the distribution within a colony of foragers that differ in response.more » « less
-
Abstract Understanding why animals (including humans) choose one thing over another is one of the key questions underlying the fields of behavioural ecology, behavioural economics and psychology. Most traditional studies of food choice in animals focus on simple, single‐attribute decision tasks. However, animals in the wild are often faced with multi‐attribute choice tasks where options in the choice set vary across multiple dimensions. Multi‐attribute decision‐making is particularly relevant for flower‐visiting insects faced with deciding between flowers that may differ in reward attributes such as sugar concentration, nectar volume and pollen composition as well as non‐rewarding attributes such as colour, symmetry and odour. How do flower‐visiting insects deal with complex multi‐attribute decision tasks?Here we review and synthesise research on the decision strategies used by flower‐visiting insects when making multi‐attribute decisions. In particular, we review how different types of foraging frameworks (classic optimal foraging theory, nutritional ecology, heuristics) conceptualise multi‐attribute choice and we discuss how phenomena such as innate preferences, flower constancy and context dependence influence our understanding of flower choice.We find that multi‐attribute decision‐making is a complex process that can be influenced by innate preferences, flower constancy, the composition of the choice set and economic reward value. We argue that to understand and predict flower choice in flower‐visiting insects, we need to move beyond simplified choice sets towards a view of multi‐attribute choice which integrates the role of non‐rewarding attributes and which includes flower constancy, innate preferences and context dependence. We further caution that behavioural experiments need to consider the possibility of context dependence in the design and interpretation of preference experiments.We conclude with a discussion of outstanding questions for future research. We also present a conceptual framework that incorporates the multiple dimensions of choice behaviour.more » « less
-
null (Ed.)Niche construction theory (NCT) has emerged as a promising theoretical tool for interpreting zooarchaeological material. However, its juxtaposition against more established frameworks like optimal foraging theory (OFT) has raised important criticism around the testability of NCT for interpreting hominin foraging behavior. Here, we present an optimization foraging model with NCT features designed to consider the destructive realities of the archaeological record after providing a brief review of OFT and NCT. Our model was designed to consider a foragers decision to exploit an environment given predation risk, mortality, and payoff ratios between different ecologies, like more-open or more-forested environments. We then discuss how the model can be used with zooarchaeological data for inferring environmental exploitation by a primitive hominin, Homo floresiensis, from the island of Flores in Southeast Asia. Our example demonstrates that NCT can be used in combination with OFT principles to generate testable foraging hypotheses suitable for zooarchaeological researchmore » « less
-
Abstract Background Global increases in human activity threaten connectivity of animal habitat and populations. Protection and restoration of wildlife habitat and movement corridors require robust models to forecast the effects of human activity on movement behaviour, resource selection, and connectivity. Recent research suggests that animal resource selection and responses to human activity depend on their behavioural movement state, with increased tolerance for human activity in fast states of movement. Yet, few studies have incorporated state-dependent movement behaviour into analyses of Merriam connectivity, that is individual-based metrics of connectivity that incorporate landscape structure and movement behaviour. Methods We assessed the cumulative effects of anthropogenic development on multiple movement processes including movement behaviour, resource selection, and Merriam connectivity. We simulated movement paths using hidden Markov movement models and step selection functions to estimate habitat use and connectivity for three landscape scenarios: reference conditions with no anthropogenic development, current conditions, and future conditions with a simulated expansion of towns and recreational trails. Our analysis used 20 years of grizzly bear ( Ursus arctos ) and gray wolf ( Canis lupus ) movement data collected in and around Banff National Park, Canada. Results Carnivores increased their speed of travel near towns and areas of high trail and road density, presumably to avoid encounters with people. They exhibited stronger avoidance of anthropogenic development when foraging and resting compared to travelling and during the day compared to night. Wolves exhibited stronger avoidance of anthropogenic development than grizzly bears. Current development reduced the amount of high-quality habitat between two mountain towns by more than 35%. Habitat degradation constrained movement routes around towns and was most pronounced for foraging and resting behaviour. Current anthropogenic development reduced connectivity from reference conditions an average of 85%. Habitat quality and connectivity further declined under a future development scenario. Conclusions Our results highlight the cumulative effects of anthropogenic development on carnivore movement behaviour, habitat use, and connectivity. Our strong behaviour-specific responses to human activity suggest that conservation initiatives should consider how proposed developments and restoration actions would affect where animals travel and how they use the landscape.more » « less