A simple PUF-based authentication circuit is proposed that will lower the entry barrier for counterfeit countermeasures by COTs manufacturers of integrated circuits. The on-chip fingerprint circuit does not require additional die area, I/O pins, or a separate read-out circuit. This approach to assuring integrity in the semiconductor supply chain will result in negative financial incentives for counterfeiters. An 80 bit authentication circuit which includes a 16 bit frame header has been designed in a UMC 65nm process with an area estimate of 0.01 mm2.
more »
« less
Authentication Circuit with Low Incorporation Barrier for COTs Manufacturers
A simple PUF-based authentication circuit is proposed that will lower the entry barrier for counterfeit countermeasures by COTs manufacturers of integrated circuits. The on-chip fingerprint circuit does not require additional die area, I/O pins, or a separate read-out circuit. This approach to assuring integrity in the semiconductor supply chain will result in negative financial incentives for counterfeiters. An 80 bit authentication circuit which includes a 16 bit frame header has been designed in a UMC 65nm process with an area estimate of 0.01 mm2.
more »
« less
- Award ID(s):
- 1814516
- PAR ID:
- 10135567
- Date Published:
- Journal Name:
- Proceedings of the IEEE National Aerospace and Electronics Conference NAECON
- ISSN:
- 0547-3578
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A subthreshold hybrid PUF-embedded authentication circuit is proposed to mitigate the financial incentives that drive the counterfeit community and to encourage the COTS manufacturers to use authentication for system identification in their parts. The proposed hybrid PUF with cross-coupled inverters and a delay-based PUF strategy has sufficient entropy for authentication and a reduced number of transistors per bit. The area efficient fingerprint circuit does not require additional die area, pins, or power overhead. The performance of the primary circuit is unaffected by the fingerprint circuit. The hybrid circuit designed in a 65 nm CMOS process is discussed.more » « less
-
A simple and compact authentication circuit based on a 4T bit cell is proposed for counterfeit detection and avoidance. The PUF-based authentication circuit has been designed to reduce or eliminate the reluctance of COTs manufacturers to include onchip fingerprints by not requiring additional die area, I/O pins, or read-out circuits and by using a deep-sleep mode during normal circuit operation so that it does not interfere with operation of the main IC.more » « less
-
An anticounterfeit strategy based upon PUFembedded authentication circuits is proposed that will eliminate financial incentives for counterfeiters and reduce the insertion barrier for COTS manufactures. In many applications, the authentication circuit will not require additional die area, pins, or a power overhead and will not adversely affect the performance of the original circuitry. The performance of an implementation of the authentication circuit which has a large number of challenge/response pairs has been designed in a UMC 65 nm process will be discussed.more » « less
-
Ever-growing edge applications often require short processing latency and high energy efficiency to meet strict timing and power budget. In this work, we propose that the compact long short-term memory (LSTM) model can approximate conventional acausal algorithms with reduced latency and improved efficiency for real-time causal prediction, especially for the neural signal processing in closed-loop feedback applications. We design an LSTM inference accelerator by taking advantage of the fine-grained parallelism and pipelined feedforward and recurrent updates. We also propose a bit-sparse quantization method that can reduce the circuit area and power consumption by replacing the multipliers with the bit-shift operators. We explore different combinations of pruning and quantization methods for energy-efficient LSTM inference on datasets collected from the electroencephalogram (EEG) and calcium image processing applications. Evaluation results show that our proposed LSTM inference accelerator can achieve 1.19 GOPS/mW energy efficiency. The LSTM accelerator with 2-sbit/16-bit sparse quantization and 60% sparsity can reduce the circuit area and power consumption by 54.1% and 56.3%, respectively, compared with a 16-bit baseline implementation.more » « less