skip to main content


Title: Variation in the seasonal germination niche across an elevational gradient: the role of germination cueing in current and future climates
The timing of germination has profound impacts on fitness, population dynamics, and species ranges. Many plants have evolved responses to seasonal environmental cues to time germination with favorable conditions; these responses interact with temporal variation in local climate to drive the seasonal climate niche and may reflect local adaptation. Here, we examined germination responses to temperature cues in Streptanthus tortuosus populations across an elevational gradient. Methods Using common garden experiments, we evaluated differences among populations in response to cold stratification (chilling) and germination temperature and related them to observed germination phenology in the field. We then explored how these responses relate to past climate at each site and the implications of those patterns under future climate change. Results Populations from high elevations had stronger stratification requirements for germination and narrower temperature ranges for germination without stratification. Differences in germination responses corresponded with elevation and variability in seasonal temperature and precipitation across populations. Further, they corresponded with germination phenology in the field; low‐elevation populations germinated in the fall without chilling, whereas high‐elevation populations germinated after winter chilling and snowmelt in spring and summer. Climate‐change forecasts indicate increasing temperatures and decreasing snowpack, which will likely alter germination cues and timing, particularly for high‐elevation populations. Conclusions The seasonal germination niche for S. tortuosus is highly influenced by temperature and varies across the elevational gradient. Climate change will likely affect germination timing, which may cascade to influence trait expression, fitness, and population persistence.  more » « less
Award ID(s):
1831913
NSF-PAR ID:
10135589
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
AmericanEurasian journal of botany
Volume:
107
Issue:
2
ISSN:
1995-8951
Page Range / eLocation ID:
1-14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Premise

    The timing of germination has profound impacts on fitness, population dynamics, and species ranges. Many plants have evolved responses to seasonal environmental cues to time germination with favorable conditions; these responses interact with temporal variation in local climate to drive the seasonal climate niche and may reflect local adaptation. Here, we examined germination responses to temperature cues inStreptanthus tortuosuspopulations across an elevational gradient.

    Methods

    Using common garden experiments, we evaluated differences among populations in response to cold stratification (chilling) and germination temperature and related them to observed germination phenology in the field. We then explored how these responses relate to past climate at each site and the implications of those patterns under future climate change.

    Results

    Populations from high elevations had stronger stratification requirements for germination and narrower temperature ranges for germination without stratification. Differences in germination responses corresponded with elevation and variability in seasonal temperature and precipitation across populations. Further, they corresponded with germination phenology in the field; low‐elevation populations germinated in the fall without chilling, whereas high‐elevation populations germinated after winter chilling and snowmelt in spring and summer. Climate‐change forecasts indicate increasing temperatures and decreasing snowpack, which will likely alter germination cues and timing, particularly for high‐elevation populations.

    Conclusions

    The seasonal germination niche forS. tortuosusis highly influenced by temperature and varies across the elevational gradient. Climate change will likely affect germination timing, which may cascade to influence trait expression, fitness, and population persistence.

     
    more » « less
  2. The seasonal timing of seed germination determines a plant’s realized environmental niche, and is important for adaptation to climate. The timing of seasonal germination depends on patterns of seed dormancy release or induction by cold and interacts with flowering-time variation to construct different seasonal life histories. To characterize the genetic basis and climatic associations of natural variation in seed chilling responses and associated life-history syndromes, we selected 559 fully sequenced accessions of the model annual species Arabidopsis thaliana from across a wide climate range and scored each for seed germination across a range of 13 cold stratification treatments, as well as the timing of flowering and senescence. Germination strategies varied continuously along 2 major axes: 1) Overall germination fraction and 2) induction vs. release of dormancy by cold. Natural variation in seed responses to chilling was correlated with flowering time and senescence to create a range of seasonal life-history syndromes. Genome-wide association identified several loci associated with natural variation in seed chilling responses, including a known functional polymorphism in the self-binding domain of the candidate gene DOG1. A phylogeny of DOG1 haplotypes revealed ancient divergence of these functional variants associated with periods of Pleistocene climate change, and Gradient Forest analysis showed that allele turnover of candidate SNPs was significantly associated with climate gradients. These results provide evidence that A. thaliana ’s germination niche and correlated life-history syndromes are shaped by past climate cycles, as well as local adaptation to contemporary climate. 
    more » « less
  3. Abstract

    Seasonal variation in the availability of essential resources is one of the most important drivers of natural selection on the phasing and duration of annually recurring life-cycle events. Shifts in seasonal timing are among the most commonly reported responses to climate change and the capacity of organisms to adjust their timing, either through phenotypic plasticity or evolution, is a critical component of resilience. Despite growing interest in documenting and forecasting the impacts of climate change on phenology, our ability to predict how individuals, populations, and species might alter their seasonal timing in response to their changing environments is constrained by limited knowledge regarding the cues animals use to adjust timing, the endogenous genetic and molecular mechanisms that transduce cues into neural and endocrine signals, and the inherent capacity of animals to alter their timing and phasing within annual cycles. Further, the fitness consequences of phenological responses are often due to biotic interactions within and across trophic levels, rather than being simple outcomes of responses to changes in the abiotic environment. Here, we review the current state of knowledge regarding the mechanisms that control seasonal timing in vertebrates, as well as the ecological and evolutionary consequences of individual, population, and species-level variation in phenological responsiveness. Understanding the causes and consequences of climate-driven phenological shifts requires combining ecological, evolutionary, and mechanistic approaches at individual, populational, and community scales. Thus, to make progress in forecasting phenological responses and demographic consequences, we need to further develop interdisciplinary networks focused on climate change science.

     
    more » « less
  4. Abstract

    In Mediterranean climates, the timing of seasonal rains determines germination, flowering phenology and fitness. As climate change alters seasonal precipitation patterns, it is important to ask how these changes will affect the phenology and fitness of plant populations. We addressed this question experimentally with the annual plant speciesArabidopsis thaliana.

    In a first experiment, we manipulated the date of rainfall onset and recorded germination phenology on sand and soil substrates. In a second experiment, we manipulated germination date, growing season length and mid‐season drought to measure their effects on flowering time and fitness. Within each experiment, we manipulated seed dormancy and flowering time using multilocus near‐isogenic lines segregating strong and weak alleles of the seed dormancy geneDOG1and the flowering time geneFRI. We synthesized germination phenology data from the first experiment with fitness functions from the second experiment to project population fitness under different seasonal rainfall scenarios.

    Germination phenology tracked rainfall onset but was slower and more variable on sand than on soil. Many seeds dispersed on sand in spring and summer delayed germination until the cooler temperatures of autumn. The high‐dormancyDOG1allele also prevented immediate germination in spring and summer. Germination timing strongly affected plant fitness. Fecundity was highest in the October germination cohort and declined in spring germinants. The late floweringFRIallele had lower fecundity, especially in early fall and spring cohorts. Projections of population fitness revealed that: (1) Later onset of autumn rains will negatively affect population fitness. (2) Slow, variable germination on sand buffers populations against fitness impacts of variable spring and summer rainfall. (3) Seasonal selection favours high dormancy and early flowering genotypes in a Mediterranean climate with hot dry summers. The high‐dormancyDOG1allele delayed germination of spring‐dispersed fresh seeds until more favourable early fall conditions, resulting in higher projected population fitness.

    These findings suggest that Mediterranean annual plant populations are vulnerable to changes in seasonal precipitation, especially in California where rainfall onset is already occurring later. The fitness advantage of highly dormant, early flowering genotypes helps explain the prevalence of this strategy in Mediterranean populations.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  5. Abstract Aim

    Climate change is broadly affecting phenology, but species‐specific phenological response to temperature is not well understood. In streams, insect emergence has important ecosystem‐level consequences because emergent adults link aquatic and terrestrial food webs. We quantified emergence timing and duration (within‐population synchronicity) of insects among streams along a spatiotemporal gradient of mean water temperature in a montane basin to assess the sensitivity of these phenological traits to heat accumulation from mid‐winter through spring emergence periods.

    Location

    Six headwater streams in the Lookout Creek basin, H.J. Andrews Experimental Forest, Oregon, USA.

    Methods

    We collected emerging adults of four abundant insect species twice weekly throughout spring for 6 consecutive years. We fit Gaussian models to the empirical temporal distributions to characterize peak emergence timing (mean) and duration (days between 5th and 95th percentiles) for each species/stream/year combination. We then quantified relationships between degree‐day accumulation and phenological response.

    Results

    Only one of the four species (a caddisfly) showed a simple response of earlier emergence timing in both warmer streams and years. One stonefly had lengthy emergence periods resulting in substantial phenological overlap between warmer and cooler streams/years. Interestingly, two species (a mayfly and a stonefly) responded strongly to temporal (interannual) temperature differences but minimally to spatial differences, indicating that emergence was nearly synchronous among streams, within years. These two species had among‐stream differences approaching 500 degree‐days from mid‐winter to peak emergence. Conversely, duration of emergence was more strongly associated with spatial than temporal differences, with longer duration in lower‐elevation (warmer) streams.

    Main conclusions

    Emergence phenology has species‐specific responses to temperature likely driven by complex cues for diapause or quiescence periods during preceding life cycle stages. We hypothesize a trade‐off between complex phenological response that synchronizes emergence among heterogeneous sites and other traits such as adult longevity and dispersal capacity.

     
    more » « less