skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 17 until 8:00 AM ET on Saturday, May 18 due to maintenance. We apologize for the inconvenience.


Title: Incomplete Label Multi-Task Deep Learning for Spatio-Temporal Event Subtype Forecasting
Due to the potentially significant benefits for society, forecasting spatio-temporal societal events is currently attracting considerable attention from researchers. Beyond merely predicting the occurrence of future events, practitioners are now looking for information about specific subtypes of future events in order to allocate appropriate amounts and types of resources to manage such events and any associated social risks. However, forecasting event subtypes is far more complex than merely extending binary prediction to cover multiple classes, as 1) different locations require different models to handle their characteristic event subtype patterns due to spatial heterogeneity; 2) historically, many locations have only experienced a incomplete set of event subtypes, thus limiting the local model’s ability to predict previously “unseen” subtypes; and 3) the subtle discrepancy among different event subtypes requires more discriminative and profound representations of societal events. In order to address all these challenges concurrently, we propose a Spatial Incomplete Multi-task Deep leArning (SIMDA) framework that is capable of effectively forecasting the subtypes of future events. The new framework formulates spatial locations into tasks to handle spatial heterogeneity in event subtypes, and learns a joint deep representation of subtypes across tasks. Furthermore, based on the “first law of geography”, spatiallyclosed tasks share similar event subtype patterns such that adjacent tasks can share knowledge with each other effectively. Optimizing the proposed model amounts to a new nonconvex and strongly-coupled problem, we propose a new algorithm based on Alternating Direction Method of Multipliers (ADMM) that can decompose the complex problem into subproblems that can be solved efficiently. Extensive experiments on six real-world datasets demonstrate the effectiveness and efficiency of the proposed model.  more » « less
Award ID(s):
1940859 1940855 1951504
NSF-PAR ID:
10135598
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
33
ISSN:
2159-5399
Page Range / eLocation ID:
3638 to 3646
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The forecasting of significant societal events such as civil unrest and economic crisis is an interesting and challenging problem which requires both timeliness, precision, and comprehensiveness. Significant societal events are influenced and indicated jointly by multiple aspects of a society, including its economics, politics, and culture. Traditional forecasting methods based on a single data source find it hard to cover all these aspects comprehensively, thus limiting model performance. Multi-source event forecasting has proven promising but still suffers from several challenges, including (1) geographical hierarchies in multi-source data features, (2) hierarchical missing values, (3) characterization of structured feature sparsity, and (4) difficulty in model’s online update with incomplete multiple sources. This article proposes a novel feature learning model that concurrently addresses all the above challenges. Specifically, given multi-source data from different geographical levels, we design a new forecasting model by characterizing the lower-level features’ dependence on higher-level features. To handle the correlations amidst structured feature sets and deal with missing values among the coupled features, we propose a novel feature learning model based on an N th-order strong hierarchy and fused-overlapping group Lasso. An efficient algorithm is developed to optimize model parameters and ensure global optima. More importantly, to enable the model update in real time, the online learning algorithm is formulated and active set techniques are leveraged to resolve the crucial challenge when new patterns of missing features appear in real time. Extensive experiments on 10 datasets in different domains demonstrate the effectiveness and efficiency of the proposed models. 
    more » « less
  2. Urban dispersal events occur when an unexpectedly large number of people leave an area in a relatively short period of time. It is beneficial for the city authorities, such as law enforcement and city management, to have an advance knowledge of such events, as it can help them mitigate the safety risks and handle important challenges such as managing traffic, and so forth. Predicting dispersal events is also beneficial to Taxi drivers and/or ride-sharing services, as it will help them respond to an unexpected demand and gain competitive advantage. Large urban datasets such as detailed trip records and point of interest ( POI ) data make such predictions achievable. The related literature mainly focused on taxi demand prediction. The pattern of the demand was assumed to be repetitive and proposed methods aimed at capturing those patterns. However, dispersal events are, by definition, violations of those patterns and are, understandably, missed by the methods in the literature. We proposed a different approach in our prior work [32]. We showed that dispersal events can be predicted by learning the complex patterns of arrival and other features that precede them in time. We proposed a survival analysis formulation of this problem and proposed a two-stage framework (DILSA), where a deep learning model predicted the survival function at each point in time in the future. We used that prediction to determine the time of the dispersal event in the future, or its non-occurrence. However, DILSA is subject to a few limitations. First, based on evidence from the data, mobility patterns can vary through time at a given location. DILSA does not distinguish between different mobility patterns through time. Second, mobility patterns are also different for different locations. DILSA does not have the capability to directly distinguish between different locations based on their mobility patterns. In this article, we address these limitations by proposing a method to capture the interaction between POIs and mobility patterns and we create vector representations of locations based on their mobility patterns. We call our new method DILSA+. We conduct extensive case studies and experiments on the NYC Yellow taxi dataset from 2014 to 2016. Results show that DILSA+ can predict events in the next 5 hours with an F1-score of 0.66. It is significantly better than DILSA and the state-of-the-art deep learning approaches for taxi demand prediction. 
    more » « less
  3. Spatial data are ubiquitous and have transformed decision-making in many critical domains, including public health, agriculture, transportation, etc. While recent advances in machine learning offer promising ways to harness massive spatial datasets (e.g., satellite imagery), spatial heterogeneity -- a fundamental property of spatial data -- poses a major challenge as data distributions or generative processes often vary over space. Recent studies targeting this difficult problem either require a known space-partitioning as the input, or can only support limited special cases (e.g., binary classification). Moreover, heterogeneity-pattern learned by these methods are locked to the locations of the training samples, and cannot be applied to new locations. We propose a statistically-guided framework to adaptively partition data in space during training using distribution-driven optimization and transform a deep learning model (of user's choice) into a heterogeneity-aware architecture. We also propose a spatial moderator to generalize learned patterns to new test regions. Experiment results on real-world datasets show that the framework can effectively capture footprints of heterogeneity and substantially improve prediction performances.

     
    more » « less
  4. Abstract

    Advances in visual perceptual tasks have been mainly driven by the amount, and types, of annotations of large-scale datasets. Researchers have focused on fully-supervised settings to train models using offline epoch-based schemes. Despite the evident advancements, limitations and cost of manually annotated datasets have hindered further development for event perceptual tasks, such as detection and localization of objects and events in videos. The problem is more apparent in zoological applications due to the scarcity of annotations and length of videos-most videos are at most ten minutes long. Inspired by cognitive theories, we present a self-supervised perceptual prediction framework to tackle the problem of temporal event segmentation by building a stable representation of event-related objects. The approach is simple but effective. We rely on LSTM predictions of high-level features computed by a standard deep learning backbone. For spatial segmentation, the stable representation of the object is used by an attention mechanism to filter the input features before the prediction step. The self-learned attention maps effectively localize the object as a side effect of perceptual prediction. We demonstrate our approach on long videos from continuous wildlife video monitoring, spanning multiple days at 25 FPS. We aim to facilitate automated ethogramming by detecting and localizing events without the need for labels. Our approach is trained in an online manner on streaming input and requires only a single pass through the video, with no separate training set. Given the lack of long and realistic (includes real-world challenges) datasets, we introduce a new wildlife video dataset–nest monitoring of the Kagu (a flightless bird from New Caledonia)–to benchmark our approach. Our dataset features a video from 10 days (over 23 million frames) of continuous monitoring of the Kagu in its natural habitat. We annotate every frame with bounding boxes and event labels. Additionally, each frame is annotated with time-of-day and illumination conditions. We will make the dataset, which is the first of its kind, and the code available to the research community. We find that the approach significantly outperforms other self-supervised, traditional (e.g., Optical Flow, Background Subtraction) and NN-based (e.g., PA-DPC, DINO, iBOT), baselines and performs on par with supervised boundary detection approaches (i.e., PC). At a recall rate of 80%, our best performing model detects one false positive activity every 50 min of training. On average, we at least double the performance of self-supervised approaches for spatial segmentation. Additionally, we show that our approach is robust to various environmental conditions (e.g., moving shadows). We also benchmark the framework on other datasets (i.e., Kinetics-GEBD, TAPOS) from different domains to demonstrate its generalizability. The data and code are available on our project page:https://aix.eng.usf.edu/research_automated_ethogramming.html

     
    more » « less
  5. Spatio-temporal machine learning is critically needed for a variety of societal applications, such as agricultural monitoring, hydrological forecast, and traffic management. These applications greatly rely on regional features that characterize spatial and temporal differences. However, spatio-temporal data often exhibit complex patterns and significant data variability across different locations. The labels in many real-world applications can also be limited, which makes it difficult to separately train independent models for different locations. Although meta learning has shown promise in model adaptation with small samples, existing meta learning methods remain limited in handling a large number of heterogeneous tasks, e.g., a large number of locations with varying data patterns. To bridge the gap, we propose task-adaptive formulations and a model-agnostic meta-learning framework that transforms regionally heterogeneous data into location-sensitive meta tasks. We conduct task adaptation following an easy-to-hard task hierarchy in which different meta models are adapted to tasks of different difficulty levels. One major advantage of our proposed method is that it improves the model adaptation to a large number of heterogeneous tasks. It also enhances the model generalization by automatically adapting the meta model of the corresponding difficulty level to any new tasks. We demonstrate the superiority of our proposed framework over a diverse set of baselines and state-of-the-art meta-learning frameworks. Our extensive experiments on real crop yield data show the effectiveness of the proposed method in handling spatial-related heterogeneous tasks in real societal applications.

     
    more » « less