skip to main content

This content will become publicly available on August 31, 2022

Title: DILSA+: Predicting Urban Dispersal Events through Deep Survival Analysis with Enhanced Urban Features
Urban dispersal events occur when an unexpectedly large number of people leave an area in a relatively short period of time. It is beneficial for the city authorities, such as law enforcement and city management, to have an advance knowledge of such events, as it can help them mitigate the safety risks and handle important challenges such as managing traffic, and so forth. Predicting dispersal events is also beneficial to Taxi drivers and/or ride-sharing services, as it will help them respond to an unexpected demand and gain competitive advantage. Large urban datasets such as detailed trip records and point of interest ( POI ) data make such predictions achievable. The related literature mainly focused on taxi demand prediction. The pattern of the demand was assumed to be repetitive and proposed methods aimed at capturing those patterns. However, dispersal events are, by definition, violations of those patterns and are, understandably, missed by the methods in the literature. We proposed a different approach in our prior work [32]. We showed that dispersal events can be predicted by learning the complex patterns of arrival and other features that precede them in time. We proposed a survival analysis formulation of this problem and proposed more » a two-stage framework (DILSA), where a deep learning model predicted the survival function at each point in time in the future. We used that prediction to determine the time of the dispersal event in the future, or its non-occurrence. However, DILSA is subject to a few limitations. First, based on evidence from the data, mobility patterns can vary through time at a given location. DILSA does not distinguish between different mobility patterns through time. Second, mobility patterns are also different for different locations. DILSA does not have the capability to directly distinguish between different locations based on their mobility patterns. In this article, we address these limitations by proposing a method to capture the interaction between POIs and mobility patterns and we create vector representations of locations based on their mobility patterns. We call our new method DILSA+. We conduct extensive case studies and experiments on the NYC Yellow taxi dataset from 2014 to 2016. Results show that DILSA+ can predict events in the next 5 hours with an F1-score of 0.66. It is significantly better than DILSA and the state-of-the-art deep learning approaches for taxi demand prediction. « less
Authors:
; ; ; ;
Award ID(s):
1942680 1952085
Publication Date:
NSF-PAR ID:
10326803
Journal Name:
ACM Transactions on Intelligent Systems and Technology
Volume:
12
Issue:
4
Page Range or eLocation-ID:
1 to 25
ISSN:
2157-6904
Sponsoring Org:
National Science Foundation
More Like this
  1. Urban dispersal events are processes where an unusually large number of people leave the same area in a short period. Early prediction of dispersal events is important in mitigating congestion and safety risks and making better dispatching decisions for taxi and ride-sharing fleets. Existing work mostly focuses on predicting taxi demand in the near future by learning patterns from historical data. However, they fail in case of abnormality because dispersal events with abnormally high demand are non-repetitive and violate common assumptions such as smoothness in demand change over time. Instead, in this paper we argue that dispersal events follow amore »complex pattern of trips and other related features in the past, which can be used to predict such events. Therefore, we formulate the dispersal event prediction problem as a survival analysis problem. We propose a two-stage framework (DILSA), where a deep learning model combined with survival analysis is developed to predict the probability of a dispersal event and its demand volume. We conduct extensive case studies and experiments on the NYC Yellow taxi dataset from 2014-2016. Results show that DILSA can predict events in the next 5 hours with F1-score of 0:7 and with average time error of 18 minutes. It is orders of magnitude better than the state-of-the-art deep learning approaches for taxi demand prediction.« less
  2. Ride-sourcing services play an increasingly important role in meeting mobility needs in many metropolitan areas. Yet, aside from delivering passengers from their origins to destinations, ride-sourcing vehicles generate a significant number of vacant trips from the end of one customer delivery trip to the start of the next. These vacant trips create additional traffic demand and may worsen traffic conditions in urban networks. Capturing the congestion effect of these vacant trips poses a great challenge to the modeling practice of transportation planning agencies. With ride-sourcing services, vehicular trips are the outcome of the interactions between service providers and passengers, amore »missing ingredient in the current traffic assignment methodology. In this paper, we enhance the methodology by explicitly modeling those vacant trips, which include cruising for customers and deadheading for picking up them. Because of the similarity between taxi and ride-sourcing services, we first extend previous taxi network models to construct a base model, which assumes intranode matching between customers and idle ride-sourcing vehicles and thus, only considers cruising vacant trips. Considering spatial matching among multiple zones commonly practiced by ride-sourcing platforms, we further enhance the base model by encapsulating internode matching and considering both the cruising and deadheading vacant trips. A large set of empirical data from Didi Chuxing is applied to validate the proposed enhancement for internode matching. The extended model describes the equilibrium state that results from the interactions between background regular traffic and occupied, idle, and deadheading ride-sourcing vehicles. A solution algorithm is further proposed to solve the enhanced model effectively. Numerical examples are presented to demonstrate the model and solution algorithm. Although this study focuses on ride-sourcing services, the proposed modeling framework can be adapted to model other types of shared use mobility services.« less
  3. Urban flooding is a major natural disaster that poses a serious threat to the urban environment. It is highly demanded that the flood extent can be mapped in near real-time for disaster rescue and relief missions, reconstruction efforts, and financial loss evaluation. Many efforts have been taken to identify the flooding zones with remote sensing data and image processing techniques. Unfortunately, the near real-time production of accurate flood maps over impacted urban areas has not been well investigated due to three major issues. (1) Satellite imagery with high spatial resolution over urban areas usually has nonhomogeneous background due to differentmore »types of objects such as buildings, moving vehicles, and road networks. As such, classical machine learning approaches hardly can model the spatial relationship between sample pixels in the flooding area. (2) Handcrafted features associated with the data are usually required as input for conventional flood mapping models, which may not be able to fully utilize the underlying patterns of a large number of available data. (3) High-resolution optical imagery often has varied pixel digital numbers (DNs) for the same ground objects as a result of highly inconsistent illumination conditions during a flood. Accordingly, traditional methods of flood mapping have major limitations in generalization based on testing data. To address the aforementioned issues in urban flood mapping, we developed a patch similarity convolutional neural network (PSNet) using satellite multispectral surface reflectance imagery before and after flooding with a spatial resolution of 3 meters. We used spectral reflectance instead of raw pixel DNs so that the influence of inconsistent illumination caused by varied weather conditions at the time of data collection can be greatly reduced. Such consistent spectral reflectance data also enhance the generalization capability of the proposed model. Experiments on the high resolution imagery before and after the urban flooding events (i.e., the 2017 Hurricane Harvey and the 2018 Hurricane Florence) showed that the developed PSNet can produce urban flood maps with consistently high precision, recall, F1 score, and overall accuracy compared with baseline classification models including support vector machine, decision tree, random forest, and AdaBoost, which were often poor in either precision or recall. The study paves the way to fuse bi-temporal remote sensing images for near real-time precision damage mapping associated with other types of natural hazards (e.g., wildfires and earthquakes).« less
  4. Abstract This article proposes several advances to sparse nonnegative matrix factorization (SNMF) as a way to identify large-scale patterns in urban traffic data. The input to our model is traffic counts organized by time and location. Nonnegative matrix factorization additively decomposes this information, organized as a matrix, into a linear sum of temporal signatures. Penalty terms encourage this factorization to concentrate on only a few temporal signatures, with weights which are not too large. Our interest here is to quantify and compare the regularity of traffic behavior, particularly across different broad temporal windows. In addition to the rank and error,more »we adapt a measure introduced by Hoyer to quantify sparsity in the representation. Combining these, we construct several curves which quantify error as a function of rank (the number of possible signatures) and sparsity; as rank goes up and sparsity goes down, the approximation can be better and the error should decreases. Plots of several such curves corresponding to different time windows leads to a way to compare disorder/order at different time scalewindows. In this paper, we apply our algorithms and procedures to study a taxi traffic dataset from New York City. In this dataset, we find weekly periodicity in the signatures, which allows us an extra framework for identifying outliers as significant deviations from weekly medians. We then apply our seasonal disorder analysis to the New York City traffic data and seasonal (spring, summer, winter, fall) time windows. We do find seasonal differences in traffic order.« less
  5. Urban traffic status (e.g., traffic speed and volume) is highly dynamic in nature, namely, varying across space and evolving over time. Thus, predicting such traffic dynamics is of great importance to urban development and transportation management. However, it is very challenging to solve this problem due to spatial-temporal dependencies and traffic uncertainties. In this article, we solve the traffic dynamics prediction problem from Bayesian meta-learning perspective and propose a novel continuous spatial-temporal meta-learner (cST-ML), which is trained on a distribution of traffic prediction tasks segmented by historical traffic data with the goal of learning a strategy that can be quicklymore »adapted to related but unseen traffic prediction tasks. cST-ML tackles the traffic dynamics prediction challenges by advancing the Bayesian black-box meta-learning framework through the following new points: (1) cST-ML captures the dynamics of traffic prediction tasks using variational inference, and to better capture the temporal uncertainties within tasks, cST-ML performs as a rolling window within each task; (2) cST-ML has novel designs in architecture, where CNN and LSTM are embedded to capture the spatial-temporal dependencies between traffic status and traffic-related features; (3) novel training and testing algorithms for cST-ML are designed. We also conduct experiments on two real-world traffic datasets (taxi inflow and traffic speed) to evaluate our proposed cST-ML. The experimental results verify that cST-ML can significantly improve the urban traffic prediction performance and outperform all baseline models especially when obvious traffic dynamics and temporal uncertainties are presented.« less