skip to main content

Title: Developing the Chinese Academic Map Publishing Platform
The discipline of the humanities has long been inseparable from the exploration of space and time. With the rapid advancement of digitization, databases, and data science, humanities research is making greater use of quantitative spatiotemporal analysis and visualization. In response to this trend, our team developed the Chinese academic map publishing platform (AMAP) with the aim of supporting the digital humanities from a Chinese perspective. In compiling materials mined from China’s historical records, AMAP attempts to reconstruct the geographical distribution of entities including people, activities, and events, using places to connect these historical objects through time. This project marks the beginning of the development of a comprehensive database and visualization system to support humanities scholarship in China, and aims to facilitate the accumulation of spatiotemporal datasets, support multi-faceted queries, and provide integrated visualization tools. The software itself is built on Harvard’s WorldMap codebase, with enhancements which include improved support for Asian projections, support for Chinese encodings, the ability to handle long text attributes, feature level search, and mobile application support. The goal of AMAP is to make Chinese historical data more accessible, while cultivating collaborative opensource software development.
Authors:
; ;
Award ID(s):
1841403
Publication Date:
NSF-PAR ID:
10136053
Journal Name:
ISPRS International Journal of Geo-Information
Volume:
8
Issue:
12
Page Range or eLocation-ID:
567
ISSN:
2220-9964
Sponsoring Org:
National Science Foundation
More Like this
  1. Gresalfi, M. and (Ed.)
    History educators in large-lecture humanities undergraduate classrooms struggle to support reading comprehension, defined as the ability to simultaneously read a complex text critically, understand the text’s details and context, and vet the text’s claims. Critical reading of historical texts in particular helps bridge the gap between seeing history as memorization-oriented and seeing it as an inquiry-oriented discipline that reconstructs narrative and context. Net.Create is an open-source, network-analysis software tool paired with activities that support intuitive creation and revision of a network data set and accompanying visualization, and through these representational practices, reading comprehension in humanities classrooms. Findings show that asmore »students draw on details in a historical text to collaboratively construct a larger network, they begin to emphasize context reconstruction over memorization.« less
  2. Building science gateways for humanities content poses new challenges to the science gateway community. Compared with science gateways devoted to scientific content, humanities-related projects usually require 1) processing data in various formats, such as text, image, video, etc., 2) constant public access from a broad audience, and therefore 3) reliable security, ideally with low maintenance. Many traditional science gateways are monolithic in design, which makes them easier to write, but they can be computationally inefficient when integrated with numerous scientific packages for data capture and pipeline processing. Since these packages tend to be single-threaded or nonmodular, they can create trafficmore »bottlenecks when processing large numbers of requests. Moreover, these science gateways are usually challenging to resume development on due to long gaps between funding periods and the aging of the integrated scientific packages. In this paper, we study the problem of building science gateways for humanities projects by developing a service-based architecture, and present two such science gateways: the Moving Image Research Collections (MIRC) – a science gateway focusing on image analysis for digital surrogates of historical motion picture film, and SnowVision - a science gateway for studying pottery fragments in southeastern North America. For each science gateway, we present an overview of the background of the projects, and some unique challenges in their design and implementation. These two science gateways are deployed on XSEDE’s Jetstream academic clouding computing resource and are accessed through web interfaces. Apache Airavata middleware is used to manage the interactions between the web interface and the deep-learning-based (DL) backend service running on the Bridges graphics processing unit (GPU) cluster.« less
  3. This paper contributes to recent studies exploring the longue durée of human impacts on island landscapes, the impacts of climate and other environmental changes on human communities, and the interaction of human societies and their environments at different spatial and temporal scales. In particular, the paper addresses Iceland during the medieval period (with a secondary, comparative focus on Norse Greenland) and discusses episodes where environmental and climatic changes have appeared to cross key thresholds for agricultural productivity. The paper draws upon international, interdisciplinary research in the North Atlantic region led by the North Atlantic Biocultural Organization (NABO) and the Nordicmore »Network for Interdisciplinary Environmental Studies (NIES) in the Circumpolar Networks program of the Integrated History and Future of People on Earth (IHOPE). By interlinking analyses of historically grounded literature with archaeological studies and environmental science, valuable new perspectives can emerge on how these past societies may have understood and coped with such impacts. As climate and other environmental changes do not operate in isolation, vulnerabilities created by socioeconomic factors also beg consideration. The paper illustrates the benefits of an integrated environmental-studies approach that draws on data, methodologies and analytical tools of environmental humanities, social sciences, and geosciences to better understand long-term human ecodynamics and changing human-landscape-environment interactions through time. One key goal is to apply previously unused data and concerted expertise to illuminate human responses to past changes; a secondary aim is to consider how lessons derived from these cases may be applicable to environmental threats and socioecological risks in the future, especially as understood in light of the New Human Condition, the concept transposed from Hannah Arendt's influential framing of the human condition that is foregrounded in the present special issue. This conception admits human agency's role in altering the conditions for life on earth, in large measure negatively, while acknowledging the potential of this self-same agency, if effectively harnessed and properly directed, to sustain essential planetary conditions through a salutary transformation of human perception, understanding and remedial action. The paper concludes that more long-term historical analyses of cultures and environments need to be undertaken at various scales. Past cases do not offer perfect analogues for the future, but they can contribute to a better understanding of how resilience and vulnerability occur, as well as how they may be compromised or mitigated.« less
  4. Abstract Background Recent development of bioinformatics tools for Next Generation Sequencing data has facilitated complex analyses and prompted large scale experimental designs for comparative genomics. When combined with the advances in network inference tools, this can lead to powerful methodologies for mining genomics data, allowing development of pipelines that stretch from sequence reads mapping to network inference. However, integrating various methods and tools available over different platforms requires a programmatic framework to fully exploit their analytic capabilities. Integrating multiple genomic analysis tools faces challenges from standardization of input and output formats, normalization of results for performing comparative analyses, to developingmore »intuitive and easy to control scripts and interfaces for the genomic analysis pipeline. Results We describe here NetSeekR, a network analysis R package that includes the capacity to analyze time series of RNA-Seq data, to perform correlation and regulatory network inferences and to use network analysis methods to summarize the results of a comparative genomics study. The software pipeline includes alignment of reads, differential gene expression analysis, correlation network analysis, regulatory network analysis, gene ontology enrichment analysis and network visualization of differentially expressed genes. The implementation provides support for multiple RNA-Seq read mapping methods and allows comparative analysis of the results obtained by different bioinformatics methods. Conclusion Our methodology increases the level of integration of genomics data analysis tools to network inference, facilitating hypothesis building, functional analysis and genomics discovery from large scale NGS data. When combined with network analysis and simulation tools, the pipeline allows for developing systems biology methods using large scale genomics data.« less
  5. . Granting agencies invest millions of dollars on the generation and analysis of data, making these products extremely valuable. However, without sufficient annotation of the methods used to collect and analyze the data, the ability to reproduce and reuse those products suffers. This lack of assurance of the quality and credibility of the data at the different stages in the research process essentially wastes much of the investment of time and funding and fails to drive research forward to the level of potential possible if everything was effectively annotated and disseminated to the wider research community. In order to addressmore »this issue for the Hawai'i Established Program to Stimulate Competitive Research (EPSCoR) project, a water science gateway was developed at the University of Hawai‘i (UH), called the ‘Ike Wai Gateway. In Hawaiian, ‘Ike means knowledge and Wai means water. The gateway supports research in hydrology and water management by providing tools to address questions of water sustainability in Hawai‘i. The gateway provides a framework for data acquisition, analysis, model integration, and display of data products. The gateway is intended to complement and integrate with the capabilities of the Consortium of Universities for the Advancement of Hydrologic Science's (CUAHSI) Hydroshare by providing sound data and metadata management capabilities for multi-domain field observations, analytical lab actions, and modeling outputs. Functionality provided by the gateway is supported by a subset of the CUAHSI’s Observations Data Model (ODM) delivered as centralized web based user interfaces and APIs supporting multi-domain data management, computation, analysis, and visualization tools to support reproducible science, modeling, data discovery, and decision support for the Hawai'i EPSCoR ‘Ike Wai research team and wider Hawai‘i hydrology community. By leveraging the Tapis platform, UH has constructed a gateway that ties data and advanced computing resources together to support diverse research domains including microbiology, geochemistry, geophysics, economics, and humanities, coupled with computational and modeling workflows delivered in a user friendly web interface with workflows for effectively annotating the project data and products. Disseminating results for the ‘Ike Wai project through the ‘Ike Wai data gateway and Hydroshare makes the research products accessible and reusable.« less