As diverse high-performance computing (HPC) systems are built, many opportunities arise for applications to solve larger problems than ever before. Given the significantly increased complexity of these HPC systems and application tuning, empirical performance tuning, such as autotuning, has emerged as a promising approach in recent years. Despite its effectiveness, autotuning is often a computationally expensive approach. Transfer learning (TL)-based autotuning seeks to address this issue by leveraging the data from prior tuning. Current TL methods for autotuning spend significant time modeling the relationship between parameter configurations and performance, which is ineffective for few-shot (that is, few empirical evaluations) tuning on new tasks. We introduce the first generative TL-based autotuning approach based on the Gaussian copula (GC) to model the high-performing regions of the search space from prior data and then generate high-performing configurations for new tasks. This allows a sampling-based approach that maximizes few-shot performance and provides the first probabilistic estimation of the few-shot budget for effective TL-based autotuning. We compare our generative TL approach with state-of-the-art autotuning techniques on several benchmarks. We find that the GC is capable of achieving 64.37% of peak few-shot performance in its first evaluation. Furthermore, the GC model can determine a few-shot transfer budget that yields up to 33.39X speedup, a dramatic improvement over the 20.58X speedup using prior techniques.
more »
« less
Massively Parallel Automated Software Tuning
This article presents an implementation of a distributed autotuning engine developed as part of the Bench-testing OpenN Software Autotuning Infrastructure project. The system is geared towards performance optimization of computational kernels for graphics processing units, and allows for the deployment of vast autotuning sweeps to massively parallel machines. The software implements dynamic work scheduling to distributed-memory resources and takes advantage of multithreading for parallel compilation and dispatches kernel launches to multiple accelerators. This paper lays out the main design principles of the system and discusses the basic mechanics of the initial implementation. Preliminary performance results are presented, encountered challenges are discussed, and the future directions are outlined.
more »
« less
- Award ID(s):
- 1642441
- PAR ID:
- 10136174
- Date Published:
- Journal Name:
- International Conference on Parallel Processing
- Issue:
- 92
- ISSN:
- 0190-3918
- Page Range / eLocation ID:
- 1 - 10
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Despite advancements in the areas of parallel and distributed computing, the complexity of programming on High Performance Computing (HPC) resources has deterred many domain experts, especially in the areas of machine learning and artificial intelligence (AI), from utilizing performance benefits of such systems. Researchers and scientists favor high-productivity languages to avoid the inconvenience of programming in low-level languages and costs of acquiring the necessary skills required for programming at this level. In recent years, Python, with the support of linear algebra libraries like NumPy, has gained popularity despite facing limitations which prevent this code from distributed runs. Here we present a solution which maintains both high level programming abstractions as well as parallel and distributed efficiency. Phylanx, is an asynchronous array processing toolkit which transforms Python and NumPy operations into code which can be executed in parallel on HPC resources by mapping Python and NumPy functions and variables into a dependency tree executed by HPX, a general purpose, parallel, task-based runtime system written in C++. Phylanx additionally provides introspection and visualization capabilities for debugging and performance analysis. We have tested the foundations of our approach by comparing our implementation of widely used machine learning algorithms to accepted NumPy standards.more » « less
-
In parallel with the continuously increasing parameter space dimensionality, search and optimization algorithms should support distributed parameter evaluations to reduce cumulative runtime. Intel’s neuromorphic optimization library, Lava-Optimization, was introduced as an abstract optimization system compatible with neuromorphic systems developed in the broader Lava software framework. In this work, we introduce Lava Multi-Agent Optimization (LMAO) with native support for distributed parameter evaluations communicating with a central Bayesian optimization system. LMAO provides an abstract framework for deploying distributed optimization and search algorithms within the Lava software framework. Moreover, LMAO introduces support for random and grid search along with process connections across multiple levels of mathematical precision. We evaluate the algorithmic performance of LMAO with a traditional non-convex optimization problem, a fixed-precision transductive spiking graph neural network for citation graph classification, and a neuromorphic satellite scheduling problem. Our results highlight LMAO’s efficient scaling to multiple processes, reducing cumulative runtime and minimizing the likelihood of converging to local optima.more » « less
-
null (Ed.)Performance variation deriving from hardware and software sources is common in modern scientific and data-intensive computing systems, and synchronization in parallel and distributed programs often exacerbates their impacts at scale. The decentralized and emergent effects of such variation are, unfortunately, also difficult to systematically measure, analyze, and predict; modeling assumptions which are stringent enough to make analysis tractable frequently cannot be guaranteed at meaningful application scales, and longitudinal methods at such scales can require the capture and manipulation of impractically large amounts of data. This paper describes a new, scalable, and statistically robust approach for effective modeling, measurement, and analysis of large-scale performance variation in HPC systems. Our approach avoids the need to reason about complex distributions of runtimes among large numbers of individual application processes by focusing instead on the maximum length of distributed workload intervals. We describe this approach and its implementation in MPI which makes it applicable to a diverse set of HPC workloads. We also present evaluations of these techniques for quantifying and predicting performance variation carried out on large-scale computing systems, and discuss the strengths and limitations of the underlying modeling assumptions.more » « less
-
There are nearly one hundred parallel and distributed graph processing packages. Selecting the best package for a given problem is difficult; some packages require GPUs, some are optimized for distributed or shared memory, and some require proprietary compilers or perform better on different hardware. Furthermore, performance may vary wildly depending on the graph itself. This complexity makes selecting the optimal implementation manually infeasible. We develop an approach to predict the performance of parallel graph processing using both regression models and binary classification by labeling configurations as either well-performing or not. We demonstrate our approach on six graph processing packages: GraphMat, the Graph500, the Graph Algorithm Platform Benchmark Suite, GraphBIG, Galois, and PowerGraph and on four algorithms: PageRank, single-source shortest paths, triangle counting, and breadth first search. Given a graph, our method can estimate execution time or suggest an implementation and thread count expected to perform well. Our method correctly identifies well-performing configurations in 97% of test cases.more » « less
An official website of the United States government

