skip to main content


Title: Domain alignment within ferroelectric/dielectric PbTiO 3 /SrTiO 3 superlattice nanostructures
The ferroelectric domain pattern within lithographically defined PbTiO 3 /SrTiO 3 ferroelectric/dielectric heteroepitaxial superlattice nanostructures is strongly influenced by the edges of the structures. Synchrotron X-ray nanobeam diffraction reveals that the spontaneously formed 180° ferroelectric stripe domains exhibited by such superlattices adopt a configuration in rectangular nanostructures in which domain walls are aligned with long patterned edges. The angular distribution of X-ray diffuse scattering intensity from nanodomains indicates that domains are aligned within an angular range of approximately 20° with respect to the edges. Computational studies based on a time-dependent Landau–Ginzburg–Devonshire model show that the preferred direction of the alignment results from lowering of the bulk and electrostrictive contributions to the free energy of the system due to the release of the lateral mechanical constraint. This unexpected alignment appears to be intrinsic and not a result of distortions or defects caused by the patterning process. Our work demonstrates how nanostructuring and patterning of heteroepitaxial superlattices allow for pathways to create and control ferroelectric structures that may appear counterintuitive.  more » « less
Award ID(s):
1720415
NSF-PAR ID:
10136198
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nanoscale
Volume:
10
Issue:
7
ISSN:
2040-3364
Page Range / eLocation ID:
3262 to 3271
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Complex‐oxide superlattices provide a pathway to numerous emergent phenomena because of the juxtaposition of disparate properties and the strong interfacial interactions in these unit‐cell‐precise structures. This is particularly true in superlattices of ferroelectric and dielectric materials, wherein new forms of ferroelectricity, exotic dipolar textures, and distinctive domain structures can be produced. Here, relaxor‐like behavior, typically associated with the chemical inhomogeneity and complexity of solid solutions, is observed in (BaTiO3)n/(SrTiO3)n(n= 4–20 unit cells) superlattices. Dielectric studies and subsequent Vogel–Fulcher analysis show significant frequency dispersion of the dielectric maximum across a range of periodicities, with enhanced dielectric constant and more robust relaxor behavior for smaller periodn. Bond‐valence molecular‐dynamics simulations predict the relaxor‐like behavior observed experimentally, and interpretations of the polar patterns via 2D discrete‐wavelet transforms in shorter‐period superlattices suggest that the relaxor behavior arises from shape variations of the dipolar configurations, in contrast to frozen antipolar stripe domains in longer‐period superlattices (n= 16). Moreover, the size and shape of the dipolar configurations are tuned by superlattice periodicity, thus providing a definitive design strategy to use superlattice layering to create relaxor‐like behavior which may expand the ability to control desired properties in these complex systems.

     
    more » « less
  2. null (Ed.)
    Hard X-ray nanodiffraction provides a unique nondestructive technique to quantify local strain and structural inhomogeneities at nanometer length scales. However, sample mosaicity and phase separation can result in a complex diffraction pattern that can make it challenging to quantify nanoscale structural distortions. In this work, a k -means clustering algorithm was utilized to identify local maxima of intensity by partitioning diffraction data in a three-dimensional feature space of detector coordinates and intensity. This technique has been applied to X-ray nanodiffraction measurements of a patterned ferroelectric PbZr 0.2 Ti 0.8 O 3 sample. The analysis reveals the presence of two phases in the sample with different lattice parameters. A highly heterogeneous distribution of lattice parameters with a variation of 0.02 Å was also observed within one ferroelectric domain. This approach provides a nanoscale survey of subtle structural distortions as well as phase separation in ferroelectric domains in a patterned sample. 
    more » « less
  3. null (Ed.)
    A systematic study of (1− x )Pb(Fe 0.5 Nb 0.5 )O 3 – x BiFeO 3 ( x = 0–0.5) was performed by combining dielectric and electromechanical measurements with structural and microstructural characterization in order to investigate the strengthening of the relaxor properties when adding BiFeO 3 into Pb(Fe 0.5 Nb 0.5 )O 3 and forming a solid solution. Pb(Fe 0.5 Nb 0.5 )O 3 crystalizes in monoclinic symmetry exhibiting ferroelectric-like polarization versus electric field ( P–E ) hysteresis loop and sub-micron-sized ferroelectric domains. Adding BiFeO 3 to Pb(Fe 0.5 Nb 0.5 )O 3 favors a pseudocubic phase and a gradual strengthening of the relaxor behavior of the prepared ceramics. This is indicated by a broadening of the peak in temperature-dependent permittivity, narrowing of P–E hysteresis loops and decreasing size of ferroelectric domains resulting in polar nanodomains for x = 0.20 composition. The relaxor behavior was additionally confirmed by Vogel–Fulcher analysis. For the x ≥ 0.30 compositions, broad high-temperature anomalies are observed in dielectric permittivity versus temperature measurements in addition to the frequency-dispersive peak located close to room temperature. These samples also exhibit pinched P–E hysteresis loops. The observed pinching is most probably related to the reorganization of polar nanoregions under the electric field as shown by synchrotron X-ray diffraction measurements as well as by piezo-response force microscopy analysis, while in part affected by the presence of charged point defects and anti-ferroelectric order, as indicated from rapid cooling experiments and high-resolution transmission electron microscopy, respectively. 
    more » « less
  4. Abstract

    The manipulation of charge and lattice degrees of freedom in atomically precise, low‐dimensional ferroelectric superlattices can lead to exotic polar structures, such as a vortex state. The role of interfaces in the evolution of the vortex state in these superlattices (and the associated electrostatic and elastic boundary conditions they produce) has remained unclear. Here, the toroidal state, arranged in arrays of alternating clockwise/counterclockwise polar vortices, in a confined SrTiO3/PbTiO3/SrTiO3trilayer is investigated. By utilizing a combination of transmission electron microscopy, synchrotron‐based X‐ray diffraction, and phase‐field modeling, the phase transition as a function of layer thickness (number of unit cells) demonstrates how the vortex state emerges from the ferroelectric state by varying the thickness of the confined PbTiO3layer. Intriguingly, the vortex state arises at head‐to‐head domain boundaries in ferroelectrica1/a2twin structures. In turn, by varying the total number of PbTiO3layers (moving from trilayer to superlattices), it is possible to manipulate the long‐range interactions among multiple confined PbTiO3layers to stabilize the vortex state. This work provides a new understanding of how the different energies work together to produce this exciting new state of matter and can contribute to the design of novel states and potential memory applications.

     
    more » « less
  5. Abstract

    A strain‐driven BiFeO3(BFO) tetragonal to rhombohedral phase transition is demonstrated in self‐assembled BiFeO3‐CoFe2O4(BFO‐CFO) nanocomposites on LaAlO3(110)‐oriented substrates with varying thickness. The CFO forms parallel nanoscale fin‐shaped structures within a BFO matrix. Out‐of‐plane lattice strain from the BFO/CFO interfaces stabilizes the BFO rhombohedral‐like phase. The BFO exhibits a range of ferroelectric textures including stripe domains and centered domain arrangements, and the magnetic anisotropy of CFO shows a thickness‐dependent reorientation.

     
    more » « less