skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Omnidirectional Surface Vehicle for Evaluating Underwater Acoustic Communication Performance in Confined Space
This paper presents an omnidirectional surface vehicle (OSV) developed for evaluating underwater acoustic communication performance in confined water space. The OSV features centimeter-level positioning accuracy, onboard waveform probing and generation, omnidirectional maneuverability, and outstanding safety. The preliminary experimental results have successfully demonstrated the basic functionalities of this acoustic communication testbed.  more » « less
Award ID(s):
1828678 1849228
PAR ID:
10136252
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
WUWNET'19: Proceedings of the International Conference on Underwater Networks & Systems
Issue:
11
Page Range / eLocation ID:
1 to 2
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract: Navigation is a major challenge in exploring data within immersive environments, especially of large omnidirectional spherical images. We propose a method of auto-scaling to allow users to navigate using teleportation within the safe boundary of their physical environment with different levels of focus. Our method combines physical navigation with virtual teleportation. We also propose a “peek then warp” behavior when using a zoom lens and evaluate our system in conjunction with different teleportation transitions, including a proposed transition for exploration of omnidirectional and 360-degree panoramic imagery, termed Envelop, wherein the destination view expands out from the zoom lens to completely envelop the user. In this work, we focus on visualizing and navigating large omnidirectional or panoramic images with application to GIS visualization as an inside-out omnidirectional image of the earth. We conducted two user studies to evaluate our techniques over a search and comparison task. Our results illustrate the advantages of our techniques for navigation and exploration of omnidirectional images in an immersive environment. 
    more » « less
  2. Bats are the second largest mammalian order, with over 1,300 species. These animals show diverse behaviors, diets, and habitats. Most bats produce ultrasonic vocalizations and perceive their environment by processing information carried by returning echoes of their calls. Echolocation is achieved through a sophisticated audio-vocal system that allows bats to emit and detect frequencies that can range from ten to hundreds of kilohertz. In addition, most bat species are gregarious, and produce social communication calls that vary in complexity, form, and function across species. In this article, we (a) highlight the value of bats as model species for research on social communication, (b) review behavioral and neurophysiological studies of bat acoustic communication signal production and processing, and (c) discuss important directions for future research in this field. We propose that comparative studies of bat acoustic communication can provide new insights into sound processing and vocal learning across the animal kingdom. 
    more » « less
  3. Wireless communication from air-to-underwater is quite challenging because of the lack of proper physical signal that propagates well in both air and water medium. Photoacoustic energy transfer mechanism is the most promising method for such cross-medium communication, where a high energy pulsed light is focused on the water surface, causing the generation of an acoustic signal inside the water. Since acoustic signals can travel a long distance inside the water, this method enables an airborne unit to reach nodes at increased underwater depth. Yet the achievable bit rate for this process is very low. When a pulsed laser light with a higher repetition rate is focused inside the water, a vapor cloud is generated around the focus point, which blocks subsequent generation of acoustic signal and consequently limits the achievable bit rate. This paper opts to overcome such a limitation by proposing a novel pulse position modulation technique which can avoid such generation of vapor cloud and increases the bit rate significantly. 
    more » « less
  4. Underwater acoustic communications provide promising solutions for remote and real-time aquatic exploration and monitoring. However, the underwater environment is rich in various kinds of interferences. Those interferences could severely degrade the acoustic communication performance. This work tackles interference cancellation in a single-carrier modulated communication system. Based on the Nyqusit sampling theorem, the interference is parameterized by a finite number of unknown parameters. The Page test is applied to detect the presence of an interfering waveform in the received signal. An iterative receiver is developed, which iteratively performs the interference estimation/cancellation and traditional receiver processing. The proposed receiver is evaluated when the communication waveform is interfered by the ice-cracking impulsive noise and the sonar signal collected from the Arctic. The data processing results reveal that the proposed receiver achieves considerable decoding performance improvement through the iterative interference estimation and cancellation. 
    more » « less
  5. This paper investigates how an airborne node can eavesdrop on the underwater acoustic communication between submerged nodes. Conventionally, such eavesdropping has been assumed impossible as acoustic signals do not cross the water-air boundary. Here, we demonstrate that underwater acoustic communications signals can be picked up and (under certain conditions) decoded using an airborne mmWave radar due to the minute vibrations induced by the communication signals on the water surface. We implemented and evaluated a proof-of-concept prototype of our method and tested it in controlled (pool) and uncontrolled environments (lake). Our results demonstrate that an airborne device can identify the modulation and bitrate of acoustic transmissions from an uncooperative underwater transmitter (victim), and even decode the transmitted symbols. Unlike conventional over-the-air communications, our results indicate that the secrecy of underwater links varies depending on the modulation type and provide insights into the underlying reasons behind these differences. We also highlight the theoretical limitations of such a threat model, and how these results may have a significant impact on the stealthiness of underwater communications, with particular concern to submarine warfare, underwater operations (e.g., oil & gas, search & rescue, mining), and conservation of endangered species. Finally, our investigation uncovers countermeasures that can be used to improve or restore the stealthiness of underwater acoustic communications against such threats. 
    more » « less