skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploration of Large Omnidirectional Images in Immersive Environments
Abstract: Navigation is a major challenge in exploring data within immersive environments, especially of large omnidirectional spherical images. We propose a method of auto-scaling to allow users to navigate using teleportation within the safe boundary of their physical environment with different levels of focus. Our method combines physical navigation with virtual teleportation. We also propose a “peek then warp” behavior when using a zoom lens and evaluate our system in conjunction with different teleportation transitions, including a proposed transition for exploration of omnidirectional and 360-degree panoramic imagery, termed Envelop, wherein the destination view expands out from the zoom lens to completely envelop the user. In this work, we focus on visualizing and navigating large omnidirectional or panoramic images with application to GIS visualization as an inside-out omnidirectional image of the earth. We conducted two user studies to evaluate our techniques over a search and comparison task. Our results illustrate the advantages of our techniques for navigation and exploration of omnidirectional images in an immersive environment.  more » « less
Award ID(s):
1650499
PAR ID:
10137611
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)
Page Range / eLocation ID:
413 to 422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work, situated at Rensselaer's Collaborative-Research Augmented Immersive Virtual Environment Laboratory (CRAIVELab), uses panoramic image datasets for spatial audio display. A system is developed for the room-centered immersive virtual reality facility to analyze panoramic images on a segment-by-segment basis, using pre-trained neural network models for semantic segmentation and object detection, thereby generating audio objects with respective spatial locations. These audio objects are then mapped with a series of synthetic and recorded audio datasets and populated within a spatial audio environment as virtual sound sources. The resulting audiovisual outcomes are then displayed using the facility's human-scale panoramic display, as well as the 128-channel loudspeaker array for wave field synthesis (WFS). Performance evaluation indicates effectiveness for real-time enhancements, with potentials for large-scale expansion and rapid deployment in dynamic immersive virtual environments. 
    more » « less
  2. We propose a demonstration of the Social Environment for Autonomous Navigation with Virtual Reality (VR) for advancing research in Human-Robot Interaction. In our demonstration, a user controls a virtual avatar in simulation and performs directed navigation tasks with a mobile robot in a warehouse environment. Our demonstration shows how researchers can leverage the immersive nature of VR to study robot navigation from a user-centered perspective in densely populated environments while avoiding physical safety concerns common with operating robots in the real world. This is important for studying interactions with robots driven by algorithms that are early in their development lifecycle. 
    more » « less
  3. Location-based or Out-of-Home Entertainment refers to experiences such as theme and amusement parks, laser tag and paintball arenas, roller and ice skating rinks, zoos and aquariums, or science centers and museums among many other family entertainment and cultural venues. More recently, location-based VR has emerged as a new category of out-of-home entertainment. These VR experiences can be likened to social entertainment options such as laser tag, where physical movement is an inherent part of the experience versus at-home VR experiences where physical movement often needs to be replaced by artificial locomotion techniques due to tracking space constraints. In this work, we present the first VR study to understand the impact of natural walking in a large physical space on presence and user preference. We compare it with teleportation in the same large space, since teleportation is the most commonly used locomotion technique for consumer, at-home VR. Our results show that walking was overwhelmingly preferred by the participants and teleportation leads to significantly higher self-reported simulator sickness. The data also shows a trend towards higher self-reported presence for natural walking. 
    more » « less
  4. Abstract PurposeSpecialized robotic and surgical tools are increasing the complexity of operating rooms (ORs), requiring elaborate preparation especially when techniques or devices are to be used for the first time. Spatial planning can improve efficiency and identify procedural obstacles ahead of time, but real ORs offer little availability to optimize space utilization. Methods for creating reconstructions of physical setups, i.e., digital twins, are needed to enable immersive spatial planning of such complex environments in virtual reality. MethodsWe present a neural rendering-based method to create immersive digital twins of complex medical environments and devices from casual video capture that enables spatial planning of surgical scenarios. To evaluate our approach we recreate two operating rooms and ten objects through neural reconstruction, then conduct a user study with 21 graduate students carrying out planning tasks in the resulting virtual environment. We analyze task load, presence, perceived utility, plus exploration and interaction behavior compared to low visual complexity versions of the same environments. ResultsResults show significantly increased perceived utility and presence using the neural reconstruction-based environments, combined with higher perceived workload and exploratory behavior. There’s no significant difference in interactivity. ConclusionWe explore the feasibility of using modern reconstruction techniques to create digital twins of complex medical environments and objects. Without requiring expert knowledge or specialized hardware, users can create, explore and interact with objects in virtual environments. Results indicate benefits like high perceived utility while being technically approachable, which may indicate promise of this approach for spatial planning and beyond. 
    more » « less
  5. With design teams becoming more distributed, the sharing and interpreting of complex data about design concepts/prototypes and environments have become increasingly challenging. The size and quality of data that can be captured and shared directly affects the ability of receivers of that data to collaborate and provide meaningful feedback. To mitigate these challenges, the authors of this work propose the real-time translation of physical objects into an immersive virtual reality environment using readily available red, green, blue, and depth (RGB-D) sensing systems and standard networking connections. The emergence of commercial, off-the-shelf RGB-D sensing systems, such as the Microsoft Kinect, has enabled the rapid three-dimensional (3D) reconstruction of physical environments. The authors present a method that employs 3D mesh reconstruction algorithms and real-time rendering techniques to capture physical objects in the real world and represent their 3D reconstruction in an immersive virtual reality environment with which the user can then interact. Providing these features allows distributed design teams to share and interpret complex 3D data in a natural manner. The method reduces the processing requirements of the data capture system while enabling it to be portable. The method also provides an immersive environment in which designers can view and interpret the data remotely. A case study involving a commodity RGB-D sensor and multiple computers connected through standard TCP internet connections is presented to demonstrate the viability of the proposed method. 
    more » « less