skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electronic effects due to organic linker-metal surface interactions: implications on screening of MOF-encapsulated catalysts
MOF-encapsulated nanoparticles (NP@MOFs) are hybrid, heterogeneous catalysts, where the MOF could boost the activity and selectivity of the encapsulated NP for the reaction of choice by controlling reactant orientation. However, due to overwhelming combinatorics, methods to rapidly identify promising NP + MOF combinations for a given application are needed. Earlier work used a “surrogate” inert pore on top of NP-representative surfaces to generically capture MOF steric effects, hence enabling computational screening to focus on NP composition. However, the surrogate pore method neglects electronic effects of the MOF on the NP. Here, we use density functional theory to study how paradigmatic MOF linkers (imidazolate, carboxylate, and thiolate) impact the electronic structure of representative metal surfaces, and in turn the binding of small species, whose formation energies are commonly used in descriptor-based catalyst screening. We find that the coordinating moiety and functionalization of the linker modulates the shift in the metal d-band center and the electron transfer, which is correlated to experimentally measurable quantities such as C–O vibration frequencies. However, in the majority of cases, the effect of the linker on binding energies (for C*, O*, N*, H*, OH*, CH 3 * and CO*) was less than 10 kJ mol −1 . Furthermore, scaling relationships between binding energies were only slightly affected by linker-originated electronic effects. Therefore, activity/selectivity “heat maps” derived from calculations under “generic” steric constrains could remain useful to screen the optimal NP composition of an NP@MOF catalyst. On the other hand, the placement of a given NP composition on the aforementioned heat maps is affected by the MOF. For an n -butane oxidation case study, we estimated that Ag 3 Pd—a promising NP composition for selective 1-butanol formation according to previous screenings using the surrogate pore method—has a ∼85% probability of retaining a selectivity for 1-butanol above 75% when encapsulated in a carboxylic MOF of suitable pore size.  more » « less
Award ID(s):
1846707
PAR ID:
10136380
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
22
Issue:
4
ISSN:
1463-9076
Page Range / eLocation ID:
2475 to 2487
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Linker functionalization is a common route used to affect the electronic and catalytic properties of metal-organic frameworks. By either pre- or post-synthetically installing linkages with differing linker moieties the band gap, workfunction, and exciton lifetimes have been shown to be affected. One overlooked aspect of linker functionalization, however, has been the impact on the metal d -orbital energies to which they are bound. The ligand field differences should result in substantial changes in d -splitting. In this study we use density functional theory (DFT) to study the energetics of d -orbital energy tuning as a function of linker chemistry. We offer a general descriptor, linker pK a , as a tool to predict resultant band energies in metal-organic frameworks (MOFs). Our calculations reveal that simple functionalizations can affect the band energies, of primarily metal d lineage, by up to 2 eV and illustrate the significance of this band modularity using four archetypal MOFs: UiO-66, MIL-125, ZIF-8, and MOF-5. Together, we show that linker functionalization dramatically affects d -energies in MOF clusters and highlight that linker functionalization is a useful route for fine-tuning band edges centered on the metals, rather than linkers themselves. 
    more » « less
  2. null (Ed.)
    Silica-encapsulated gold core@shell nanoparticles (Au@SiO 2 CSNPs) were synthesized via a tunable bottom-up procedure to catalyze the aerobic oxidation of benzyl alcohol. The nanoparticles exhibit a mesoporous shell which enhances selectivity by inhibiting the formation of larger species. Adding potassium carbonate to the reaction increased conversion from 17.3 to 60.4% while decreasing selectivity from 98.4 to 75.0%. A gold nanoparticle control catalyst with a similar gold surface area took 6 times as long to reach the same conversion, achieving only 49.4% selectivity. These results suggest that the pore size distribution within the inert silica shell of Au@SiO 2 CSNPs inhibits the formation of undesired products to facilitate the selective oxidation of benzaldehyde despite a basic environment. A smaller activation energy, mass transport analysis, and mesopore distribution together suggest the Au@SiO 2 CSNP catalyst demonstrates higher activity through beneficial in-pore orientation, promoting a lower activation energy mechanistic pathway. Taken together, this is a promising catalytic structure to optimize oxidation chemistries, without leveraging surface-interacting factors like chelating agents or active support surfaces. 
    more » « less
  3. Porous, stacked two-dimensional covalent organic frameworks (2D COFs) bearing semiconducting linkers can support directional charge transfer across adjacent layers of the COF. To better inform the current and possible future design rules for enhancing electron and hole transport in such materials, an understanding of how linker selection and functionalization affects interlayer electronic couplings is essential. We report electronic structure simulation and analysis of electronic couplings across adjacent linker units and to encapsulated species in functionalized electroactive 2D COFs. The detailed dependence of these electronic couplings on interlayer interactions is examined through scans along key interlayer degrees of freedom and through configurational sampling from equilibrium molecular dynamics on semiempirical potential energy surfaces. Beyond affirming the sensitivity of the electronic coupling to interlayer distance and orientation, these studies offer guidance toward linker functionalization strategies for enhancing charge carrier transport in electroactive 2D COFs. 
    more » « less
  4. Abstract Efficient separation of C2H4/C2H6mixtures is of paramount importance in the petrochemical industry. Nanoporous materials, especially metal-organic frameworks (MOFs), may serve the purpose owing to their tailorable structures and pore geometries. In this work, we propose a computational framework for high-throughput screening and inverse design of high-performance MOFs for adsorption and membrane processes. High-throughput screening of the computational-ready, experimental (CoRE 2019) MOF database leads to materials with exceptionally high ethane-selective adsorption selectivity (LUDLAZ: 7.68) and ethene-selective membrane selectivity (EBINUA02: 2167.3). Moreover, the inverse design enables the exploration of broader chemical space and identification of MOF structures with even higher membrane selectivity and permeability. In addition, a relative membrane performance score (rMPS) has been formulated to evaluate the overall membrane performance relative to the Robeson boundary. The computational framework offers guidelines for the design of MOFs and is generically applicable to materials discovery for gas storage and separation. 
    more » « less
  5. The structural, electronic, and optical properties of CdSe/CdS core–shell colloidal quantum dot molecules, a new class of coupled quantum dot dimers, are explored using atomistic approaches. Unlike the case of dimers grown by molecular beam epitaxy, simulated strain profile maps of free-standing colloidal dimers show negligible additional strain resulting from the attachment. The electronic properties of the relaxed dimers are described within a semiempirical pseudopotential model combined with the Bethe–Salpeter equation within the static screening approximation to account for electron–hole correlations. The interplay of strain, hybridization (tunneling splitting), quantum confinement, and electron–hole binding energies on the optical properties is analyzed and discussed. The effects of the dimensions of the neck connecting the two quantum dot building blocks, as well as the shell thickness, are studied. 
    more » « less