skip to main content


Title: Leveraging Deep Reinforcement Learning for Pedagogical Policy Induction in an Intelligent Tutoring System
Deep Reinforcement Learning (DRL) has been shown to be a very powerful technique in recent years on a wide range of applications. Much of the prior DRL work took the online learning approach. However, given the challenges of building accurate simulations for modeling student learning, we investigated applying DRL to induce a pedagogical policy through an offiine approach. In this work, we explored the effectiveness of offiine DRL for pedagogical policy induction in an Intelligent Tutoring System. Generally speaking, when applying offiine DRL, we face two major challenges: one is limited training data and the other is the credit assignment problem caused by delayed rewards. In this work, we used Gaussian Processes to solve the credit assignment problem by estimating the inferred immediate rewards from the final delayed rewards. We then applied the DQN and Double-DQN algorithms to induce adaptive pedagogical strategies tailored to individual students. Our empirical results show that without solving the credit assignment problem, the DQN policy, although better than Double-DQN, was no better than a random policy. However, when combining DQN with the inferred rewards, our best DQN policy can outperform the random yet reasonable policy, especially for students with high pre-test scores.  more » « less
Award ID(s):
1651909
NSF-PAR ID:
10136494
Author(s) / Creator(s):
Date Published:
Journal Name:
In: Proceedings of the 12th International Conference on Educational Data Mining (EDM 2019),
Page Range / eLocation ID:
168 – 177
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Learning optimal policies in real-world domains with delayed rewards is a major challenge in Reinforcement Learning. We address the credit assignment problem by proposing a Gaussian Process (GP)-based immediate reward approximation algorithm and evaluate its effectiveness in 4 contexts where rewards can be delayed for long trajectories. In one GridWorld game and 8 Atari games, where immediate rewards are available, our results showed that on 7 out 9 games, the proposed GP inferred reward policy performed at least as well as the immediate reward policy and significantly outperformed the corresponding delayed reward policy. In e-learning and healthcare applications, we combined GP-inferred immediate rewards with offline Deep Q-Network (DQN) policy induction and showed that the GP-inferred reward policies outperformed the policies induced using delayed rewards in both real-world contexts. 
    more » « less
  2. null (Ed.)
    Abstract: In interactive e-learning environments such as Intelligent Tutoring Systems, there are pedagogical decisions to make at two main levels of granularity: whole problems and single steps. In recent years, there is growing interest in applying datadriven techniques for adaptive decision making that can dynamically tailor students’ learning experiences. Most existing data-driven approaches, however, treat these pedagogical decisions equally, or independently, disregarding the long-term impact that tutor decisions may have across these two levels of granularity. In this paper, we propose and apply an offline Gaussian Processes based Hierarchical Reinforcement Learning (HRL) framework to induce a hierarchical pedagogical policy that makes decisions at both problem and step levels. An empirical classroom study shows that the HRL policy is significantly more effective than a Deep QNetwork (DQN) induced policy and a random yet reasonable baseline policy. 
    more » « less
  3. In interactive e-learning environments such as Intelligent Tutoring Systems, there are pedagogical decisions to make at two main levels of granularity: whole problems and single steps. Recent years have seen growing interest in data-driven techniques for such pedagogical decision making, which can dynamically tailor students’ learning experiences. Most existing data-driven approaches, however, treat these pedagogical decisions equally, or independently, disregarding the long-term impact that tutor decisions may have across these two levels of granularity. In this paper, we propose and apply an offline, off-policy Gaussian Processes based Hierarchical Reinforcement Learning (HRL) framework to induce a hierarchical pedagogical policy that makes decisions at both problem and step levels. In an empirical classroom study with 180 students, our results show that the HRL policy is significantly more effective than a Deep Q-Network (DQN) induced policy and a random yet reasonable baseline policy. 
    more » « less
  4. Abstract.In interactive e-learning environments such as Intelligent Tutor-ing Systems, there are pedagogical decisions to make at two main levels of granularity: whole problems and single steps. Recent years have seen grow-ing interest in data-driven techniques for such pedagogical decision making, which can dynamically tailor students’ learning experiences. Most existing data-driven approaches, however, treat these pedagogical decisions equally, or independently, disregarding the long-term impact that tutor decisions may have across these two levels of granularity. In this paper, we propose and apply an offline, off-policy Gaussian Processes based Hierarchical ReinforcementLearning (HRL) framework to induce a hierarchical pedagogical policy that makes decisions at both problem and step levels. In an empirical classroom study with 180 students, our results show that the HRL policy is significantly more effective than a Deep Q-Network (DQN) induced policy and a random yet reasonable baseline policy. 
    more » « less
  5. Social networks are frequently polluted by rumors, which can be detected by advanced models such as graph neural networks. However, the models are vulnerable to attacks, and discovering and understanding the vulnerabilities is critical to robust rumor detection. To discover subtle vulnerabilities, we design a attacking algorithm based on reinforcement learning to camouflage rumors against black-box detectors. We address exponentially large state spaces, high-order graph dependencies, and ranking dependencies, which are unique to the problem setting but fundamentally challenging for the state-of-the-art end-to-end approaches. We design domain-specific features that have causal effect on the reward, so that even a linear policy can arrive at powerful attacks with additional interpretability. To speed up policy optimization, we devise: (i) a credit assignment method that proportionally decomposes delayed and aggregated rewards to atomic attacking actions for enhance feature-reward associations; (ii) a time-dependent control variate to reduce prediction variance due to large state-action spaces and long attack horizon, based on reward variance analysis and a Bayesian analysis of the prediction distribution. On two real world datasets of rumor detection tasks, we demonstrate: (i) the effectiveness of the learned attacking policy on a wide spectrum of target models compared to both rule-based and end-to-end attacking approaches; (ii) the usefulness of the proposed credit assignment strategy and variance reduction components; (iii) the interpretability of the attacking policy. 
    more » « less