Abstract: Modeling student learning processes is highly complex since it is influenced by many factors such as motivation and learning habits. The high volume of features and tools provided by computer-based learning environments confounds the task of tracking student knowledge even further. Deep Learning models such as Long-Short Term Memory (LSTMs) and classic Markovian models such as Bayesian Knowledge Tracing (BKT) have been successfully applied for student modeling. However, much of this prior work is designed to handle sequences of events with discrete timesteps, rather than considering the continuous aspect of time. Given that time elapsed between successive elements inmore »
One minute is enough: Early Prediction of Student Success and Event-level Difficulty during Novice Programming Tasks
Early prediction of student difficulty during long-duration learning activities allows a tutoring system to intervene by providing needed support, such as a hint, or by alerting an instructor. To be eeffective, these predictions must come early and be highly accurate, but such predictions are difficult for open-ended programming problems. In this work, Recent Temporal Patterns (RTPs) are used in conjunction with Support Vector Machine and Logistic Regression to build robust yet interpretable models for early predictions. We performed two tasks: to predict student success and difficulty during one, open-ended novice programming task of drawing a square-shaped spiral. We compared RTP against several machine learning models ranging from the classic to the more recent deep learning models such as Long Short Term Memory to predict whether students would be able to complete the programming task. Our results show that RTP-based models outperformed all others, and could successfully classify students after just one minute of a 20- minute exercise (students can spend more than 1 hour on it). To determine when a system might intervene to prevent incompleteness or eventual dropout, we applied RTP at regular intervals to predict whether a student would make progress within the next five minutes, reflecting that more »
- Award ID(s):
- 1651909
- Publication Date:
- NSF-PAR ID:
- 10136495
- Journal Name:
- In: Proceedings of the 12th International Conference on Educational Data Mining (EDM 2019)
- Page Range or eLocation-ID:
- 119 – 128
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Determining when and whether to provide personalized support is a well-known challenge called the assistance dilemma. A core problem in solving the assistance dilemma is the need to discover when students are unproductive so that the tutor can intervene. Such a task is particularly challenging for open-ended domains, even those that are well-structured with defined principles and goals. We present a set of datadriven methods to classify, predict, and prevent unproductive problem-solving steps in the well-structured open-ended domain of logic. This approach leverages and extends the Hint Factory, a set of methods that leverages prior student solution attempts to buildmore »
-
Computer-aided design (CAD) programs are essential to engineering as they allow for better designs through low-cost iterations. While CAD programs are typically taught to undergraduate students as a job skill, such software can also help students learn engineering concepts. A current limitation of CAD programs (even those that are specifically designed for educational purposes) is that they are not capable of providing automated real-time help to students. To encourage CAD programs to build in assistance to students, we used data generated from students using a free, open-source CAD software called Aladdin to demonstrate how student data combined with machine learningmore »
-
Online education technologies, such as intelligent tutoring systems, have garnered popularity for their automation. Whether it be automated support systems for teachers (grading, feedback, summary statistics, etc.) or support systems for students (hints, common wrong answer messages, scaffolding), these systems have built a well rounded support system for both students and teachers alike. The automation of these online educational technologies, such as intelligent tutoring systems, have often been limited to questions with well structured answers such as multiple choice or fill in the blank. Recently, these systems have begun adopting support for a more diverse set of question types. Moremore »
-
Online education technologies, such as intelligent tutoring systems, have garnered popularity for their automation. Whether it be automated support systems for teachers (grading, feedback, summary statistics, etc.) or support systems for students (hints, common wrong answer messages, scaffolding), these systems have built a well rounded support system for both students and teachers alike. The automation of these online educational technologies, such as intelligent tutoring systems, have often been limited to questions with well structured answers such as multiple choice or fill in the blank. Recently, these systems have begun adopting support for a more diverse set of question types. Moremore »