Abstract On-chip integrated laser sources of structured light carrying fractional orbital angular momentum (FOAM) are highly desirable for the forefront development of optical communication and quantum information–processing technologies. While integrated vortex beam generators have been previously demonstrated in different optical settings, ultrafast control and sweep of FOAM light with low-power control, suitable for high-speed optical communication and computing, remains challenging. Here we demonstrate fast control of the FOAM from a vortex semiconductor microlaser based on fast transient mixing of integer laser vorticities induced by a control pulse. A continuous FOAM sweep between charge 0 and charge +2 is demonstrated in a 100 ps time window, with the ultimate speed limit being established by the carrier recombination time in the gain medium. Our results provide a new route to generating vortex microlasers carrying FOAM that are switchable at GHz frequencies by an ultrafast control pulse.
more »
« less
Ultrafast control of vortex microlasers
The development of classical and quantum information–processing technology calls for on-chip integrated sources of structured light. Although integrated vortex microlasers have been previously demonstrated, they remain static and possess relatively high lasing thresholds, making them unsuitable for high-speed optical communication and computing. We introduce perovskite-based vortex microlasers and demonstrate their application to ultrafast all-optical switching at room temperature. By exploiting both mode symmetry and far-field properties, we reveal that the vortex beam lasing can be switched to linearly polarized beam lasing, or vice versa, with switching times of 1 to 1.5 picoseconds and energy consumption that is orders of magnitude lower than in previously demonstrated all-optical switching. Our results provide an approach that breaks the long-standing trade-off between low energy consumption and high-speed nanophotonics, introducing vortex microlasers that are switchable at terahertz frequencies.
more »
« less
- Award ID(s):
- 1847240
- PAR ID:
- 10136712
- Publisher / Repository:
- American Association for the Advancement of Science (AAAS)
- Date Published:
- Journal Name:
- Science
- Volume:
- 367
- Issue:
- 6481
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- p. 1018-1021
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Phase change chalcogenides such as Ge2Sb2Te5(GST) have recently enabled advanced optical devices for applications such as in-memory computing, reflective displays, tunable metasurfaces, and reconfigurable photonics. However, designing phase change optical devices with reliable and efficient electrical control is challenging due to the requirements of both high amorphization temperatures and extremely fast quenching rates for reversible switching. Here, we use a Multiphysics simulation framework to model three waveguide-integrated microheaters designed to switch optical phase change materials. We explore the effects of geometry, doping, and electrical pulse parameters to optimize the switching speed and minimize energy consumption in these optical devices.more » « less
-
Abstract Reconfigurability of photonic integrated circuits (PICs) has become increasingly important due to the growing demands for electronic–photonic systems on a chip driven by emerging applications, including neuromorphic computing, quantum information, and microwave photonics. Success in these fields usually requires highly scalable photonic switching units as essential building blocks. Current photonic switches, however, mainly rely on materials with weak, volatile thermo‐optic or electro‐optic modulation effects, resulting in large footprints and high energy consumption. As a promising alternative, chalcogenide phase‐change materials (PCMs) exhibit strong optical modulation in a static, self‐holding fashion, but the scalability of present PCM‐integrated photonic applications is still limited by the poor optical or electrical actuation approaches. Here, with phase transitions actuated by in situ silicon PIN diode heaters, scalable nonvolatile electrically reconfigurable photonic switches using PCM‐clad silicon waveguides and microring resonators are demonstrated. As a result, intrinsically compact and energy‐efficient switching units operated with low driving voltages, near‐zero additional loss, and reversible switching with high endurance are obtained in a complementary metal‐oxide‐semiconductor (CMOS)‐compatible process. This work can potentially enable very large‐scale CMOS‐integrated programmable electronic–photonic systems such as optical neural networks and general‐purpose integrated photonic processors.more » « less
-
Abstract Optical vortices have the tremendous potential to increase data capacity by leveraging the extra degree of freedom of orbital angular momentum. On the other hand, anisotropic 2D materials are promising building blocks for future integrated polarization‐sensitive photonic and optoelectronic devices. Here, highly anisotropic third‐harmonic optical vortex beam generation is demonstrated with fork holograms patterned on ultrathin 2D germanium arsenide flakes. It is shown that the anisotropic nonlinear vortex beam generation can be achieved independent of the fork grating orientation with respect to the crystallographic orientation. Furthermore, 2D fork hologram is designed to generate multiple optical vortices having different topological charges with strong anisotropic responses. These results pave the way toward the advancement of 2D material‐based anisotropic nonlinear optical devices for future applications in photonic integrated circuits, optical communication, and optical information processing.more » « less
-
Abstract Perfect vortex (PV) beams possessing annular intensity profiles independent of topological charges promise significant advances in particle manipulation, fiber communication, and quantum optics. The PV beam is typically generated from the Fourier transformation of the Bessel–Gauss beam. However, the conventional method to produce PV beams requires a series of bulky optical components, which greatly increases the system complexity and also hinders the photonic device integration. Here, plasmonic metasurfaces made of rectangular‐hole nanoantennas as integrated beam converters are designed and demonstrated to generate focused 3D PV beams in a broad wavelength range, by combining the phase profiles of axicon, spiral phase plate, and Fourier transform lens simultaneously based on the Pancharatnam–Berry phase. It is demonstrated that the PV beam structures can be adjusted by varying several control parameters in the metasurface design. Moreover, multiple PV beams with arbitrary arrangement and topological charges are also produced. These results have the promising potential for enabling new types of compact optical devices for tailoring complex light beams and advancing metasurface‐based functional integrated photonic chips.more » « less
An official website of the United States government
