skip to main content


Title: Ultrafast control of fractional orbital angular momentum of microlaser emissions
Abstract

On-chip integrated laser sources of structured light carrying fractional orbital angular momentum (FOAM) are highly desirable for the forefront development of optical communication and quantum information–processing technologies. While integrated vortex beam generators have been previously demonstrated in different optical settings, ultrafast control and sweep of FOAM light with low-power control, suitable for high-speed optical communication and computing, remains challenging. Here we demonstrate fast control of the FOAM from a vortex semiconductor microlaser based on fast transient mixing of integer laser vorticities induced by a control pulse. A continuous FOAM sweep between charge 0 and charge +2 is demonstrated in a 100 ps time window, with the ultimate speed limit being established by the carrier recombination time in the gain medium. Our results provide a new route to generating vortex microlasers carrying FOAM that are switchable at GHz frequencies by an ultrafast control pulse.

 
more » « less
Award ID(s):
2011411 1932803 1936276 1842612 1809518
NSF-PAR ID:
10198641
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Light: Science & Applications
Volume:
9
Issue:
1
ISSN:
2047-7538
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The development of classical and quantum information–processing technology calls for on-chip integrated sources of structured light. Although integrated vortex microlasers have been previously demonstrated, they remain static and possess relatively high lasing thresholds, making them unsuitable for high-speed optical communication and computing. We introduce perovskite-based vortex microlasers and demonstrate their application to ultrafast all-optical switching at room temperature. By exploiting both mode symmetry and far-field properties, we reveal that the vortex beam lasing can be switched to linearly polarized beam lasing, or vice versa, with switching times of 1 to 1.5 picoseconds and energy consumption that is orders of magnitude lower than in previously demonstrated all-optical switching. Our results provide an approach that breaks the long-standing trade-off between low energy consumption and high-speed nanophotonics, introducing vortex microlasers that are switchable at terahertz frequencies.

     
    more » « less
  2. Abstract

    The future of modern optoelectronics and spintronic devices relies on our ability to control the spin and charge degrees of freedom at ultrafast timescales. Rashba spin-split quantum well states, 2D states that develop at the surface of strong spin-orbit coupling materials, are ideal given the tunability of their energy and spin states. So far, however, most studies have only demonstrated such control in a static way. In this study, we demonstrate control of the spin and energy degrees of freedom of surface quantum well states on Bi2Se3at picosecond timescales. By means of a focused laser pulse, we modulate the band-bending, producing picosecond time-varying electric fields at the material’s surface, thereby reversibly modulating the quantum well spectrum and Rashba effect. Moreover, we uncover a dynamic quasi-Fermi level, dependent on the Lifshitz transition of the second quantum well band bottom. These results open a pathway for light-driven spintronic devices with ultrafast switching of electronic phases, and offer the interesting prospect to extend this ultrafast photo-gating technique to a broader host of 2D materials.

     
    more » « less
  3. High-power, short-pulse laser-driven fast electrons can rapidly heat and ionize a high-density target before it hydrodynamically expands. The transport of such electrons within a solid target has been studied using two-dimensional (2D) imaging of electron-induced Kα radiation. However, it is currently limited to no or picosecond scale temporal resolutions. Here, we demonstrate femtosecond time-resolved 2D imaging of fast electron transport in a solid copper foil using the SACLA x-ray free electron laser (XFEL). An unfocused collimated x-ray beam produced transmission images with sub-micron and ∼10 fs resolutions. The XFEL beam, tuned to its photon energy slightly above the Cu K-edge, enabled 2D imaging of transmission changes induced by electron isochoric heating. Time-resolved measurements obtained by varying the time delay between the x-ray probe and the optical laser show that the signature of the electron-heated region expands at ∼25% of the speed of light in a picosecond duration. Time-integrated Cu Kα images support the electron energy and propagation distance observed with the transmission imaging. The x-ray near-edge transmission imaging with a tunable XFEL beam could be broadly applicable for imaging isochorically heated targets by laser-driven relativistic electrons, energetic protons, or an intense x-ray beam. 
    more » « less
  4. Abstract

    The advantages of low cost, compact size, and reduced power consumption makes a photonic chip‐based ultrafast laser source an appealing technology for diverse applications such as all‐optical signal processing, frequency metrology, spectroscopy, and sensing. To date, on‐chip ultrafast sources are typically generated by microresonator‐based Kerr‐comb solitons, which require precise phase tuning and frequency agile lasers to access the soliton state. Here, this work reports the first experimental demonstration of an externally pumped on‐chip ultrafast soliton laser source based on Raman soliton self‐frequency shift. By capitalizing on strong optical nonlinearity and versatile dispersion control in Ge28Sb12Se60chalcogenide glass waveguides, 185 fs duration Raman soliton generation has been demonstrated, possessing continuous wavelength tunability from 1589 to 1807 nm with signal‐to‐noise ratios consistently exceeding 65 dB. The source operates with pump pulse energies as low as 1.08 pJ, representing over three orders of magnitude improvement compared to fiber‐based Raman soliton sources. In addition, the generated solitons exhibit excellent spectral purity and stability free from parasitic sidebands. These experimental results are further validated by theoretical analysis, revealing insights into the soliton dynamics and critical device design guidelines. This work therefore enables a new class of broadly tunable, energy‐efficient, compact, and potentially cost‐effective on‐chip ultrafast laser sources.

     
    more » « less
  5. Abstract

    Perfect vortex (PV) beams possessing annular intensity profiles independent of topological charges promise significant advances in particle manipulation, fiber communication, and quantum optics. The PV beam is typically generated from the Fourier transformation of the Bessel–Gauss beam. However, the conventional method to produce PV beams requires a series of bulky optical components, which greatly increases the system complexity and also hinders the photonic device integration. Here, plasmonic metasurfaces made of rectangular‐hole nanoantennas as integrated beam converters are designed and demonstrated to generate focused 3D PV beams in a broad wavelength range, by combining the phase profiles of axicon, spiral phase plate, and Fourier transform lens simultaneously based on the Pancharatnam–Berry phase. It is demonstrated that the PV beam structures can be adjusted by varying several control parameters in the metasurface design. Moreover, multiple PV beams with arbitrary arrangement and topological charges are also produced. These results have the promising potential for enabling new types of compact optical devices for tailoring complex light beams and advancing metasurface‐based functional integrated photonic chips.

     
    more » « less