skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Relative Navigation of Autonomous GPS-degraded Micro Air Vehicles
Unlike many current navigation approaches for micro air vehicles, the relative navigation (RN) framework presented in this paper ensures that the filter state remains observable in GPS-denied environments by working with respect to a local reference frame. By subtly restructuring the problem, RN ensures that the filter uncertainty remains bounded, consistent, and normally-distributed, and insulates flight-critical estimation and control processes from large global updates. This paper thoroughly outlines the RN framework and demonstrates its practicality with several long flight tests in unknown GPS-denied and GPS-degraded environments. The relative front end is shown to produce low-drift estimates and smooth, stable control while leveraging off-the-shelf algorithms. The system runs in real time with onboard processing, fuses a variety of vision sensors, and works indoors and outdoors without requiring special tuning for particular sensors or environments. RN is shown to produce globally-consistent, metric, and localized maps by incorporating loop closures and intermittent GPS measurements  more » « less
Award ID(s):
1650547
PAR ID:
10136848
Author(s) / Creator(s):
Date Published:
Journal Name:
Autonomous robots
ISSN:
1573-7527
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. NA (Ed.)
    Unmanned Aerial Systems have become ubiquitous and are now widely used in commercial, consumer, and military applications. Their widespread use is due to a combination of their low cost, high capability, and ability to perform tasks and go places that are not easy or safe for humans. Most UAS platforms are dependent on Global Navigation Satellite Systems (GNSS), such as the Global Positioning System (GPS), to provide positioning information for navigation and flight control. Without reliable GPS signals, the flight path cannot be trusted, and flight safety cannot be assured. However, GPS is vulnerable to several types of malicious attacks, including jamming, spoofing, or physical attacks on the GPS constellation itself. Additionally, there are environments in which GPS reception is not always possible, a key example being urban canyon areas where line-of-site to the GPS satellite constellation may be blocked or obscured by large obstacles such as buildings. Numerous methods have been proposed for position estimation in GPS denied environments. However, these methods have significant limitations and typically exhibit poor performance in certain environments and scenarios. This paper analyzes the strengths and weaknesses of existing alternate positioning methods and describes a framework where multiple positioning solutions are jointly employed to construct an optimal position estimate. The proposed framework aims to reduce computation complexity and yield good positioning performance across a wide variety of environments. 
    more » « less
  2. Unmanned Aircraft Vehicle (UAV) state estimation and navigation in GPS-denied environments has received a great deal of attention, with several researchers exploring a variety of compensating estimation methods. These methods vary in capability, and usually trade off estimation accuracy for simplicity and fewer resource requirements. More advanced estimation schemes, while capable of providing good state estimates for longer periods of time, may not be suitable for small, limited resource vehicles such as UAVs. Simpler and less-accurate estimation methods, while less capable, are useful for introducing the topic to students as well as helping researchers establish flight capabilities, and may be more suitable on limited hardware. The Autonomous Vehicle Laboratory’s (AVL) REEF Estimator was designed to expedite the development of a group’s GPS-denied flight capabilities through its simple and modular design. This work seeks to extend the application of the REEF Estimator by adapting it to fit the Ardupilot flight stack so that the estimator may be used on a readily available and NDAA-compliant flight controller, specifically, a Pixhawk Cube Blue. In addition, the REEF Estimator has been containerized to further facilitate its deployment between different vehicle architectures with minimal need for reconfiguration or setup. 
    more » « less
  3. null (Ed.)
    Unmanned aerial vehicles (UAVs) suffer from sensor drifts in GPS denied environments, which can lead to potentially dangerous situations. To avoid intolerable sensor drifts in the presence of GPS spoofing attacks, we propose a safety constrained control framework that adapts the UAV at a path re-planning level to support resilient state estimation against GPS spoofing attacks. The attack detector is used to detect GPS spoofing attacks and provides a switching criterion between the robust control mode and emergency control mode. An attacker location tracker (ALT) is developed to track the attacker's location and estimate the spoofing device's output power by the unscented Kalman filter (UKF) with sliding window outputs. Using the estimates from ALT, we design an escape controller (ESC) based on the model predictive controller (MPC) such that the UAV escapes from the effective range of the spoofing device within the escape time. 
    more » « less
  4. This work presents a multiplicative extended Kalman filter (MEKF) for estimating the relative state of a multirotor vehicle operating in a GPS-denied environment. The filter fuses data from an inertial measurement unit and altimeter with relative-pose updates from a keyframe-based visual odometry or laser scan-matching algorithm. Because the global position and heading states of the vehicle are unobservable in the absence of global measurements such as GPS, the filter in this article estimates the state with respect to a local frame that is colocated with the odometry keyframe. As a result, the odometry update provides nearly direct measurements of the relative vehicle pose, making those states observable. Recent publications have rigorously documented the theoretical advantages of such an observable parameterization, including improved consistency, accuracy, and system robustness, and have demonstrated the effectiveness of such an approach during prolonged multirotor flight tests. This article complements this prior work by providing a complete, self-contained, tutorial derivation of the relative MEKF, which has been thoroughly motivated but only briefly described to date. This article presents several improvements and extensions to the filter while clearly defining all quaternion conventions and properties used, including several new useful properties relating to error quaternions and their Euler-angle decomposition. Finally, this article derives the filter both for traditional dynamics defined with respect to an inertial frame, and for robocentric dynamics defined with respect to the vehicle’s body frame, and provides insights into the subtle differences that arise between the two formulations.

     
    more » « less
  5. null (Ed.)
    Localization is a key ability for robot navigation and collision avoidance. The advent of technologies such as GPS have led to many improvements in terrestrial navigation. Unfortunately traditional electromagnetic (EM) communications propagate poorly through lossy media such as underwater and underground. Therefore, localization remains a challenging problem in such environments, necessitating other approaches such as acoustics and magnetic induction (MI). This paper investigates estimating the relative location of a pair of MI triaxial coil antennas in air, as a preliminary step to underwater applications. By measuring the voltages induced in the receiving antenna when the transmitting antenna's coils are turned on sequentially, the distance between the antennas can be computed. Then, with knowledge of the current velocities of the antennas, we can apply a particle filter to generate an estimate of the location of the transmitting antenna with respect to the receiving one. The theory is supported by simulations and later verified through a series of experiments. 
    more » « less