skip to main content


Title: Mono-Stereoscopic Camera in a Virtual Reality Environment: Case Study in Cybersickness
Cybersickness in Virtual Reality (VR) is a serious issue affecting the overall experience. Many research papers have investigated the causes of cybersickness and offered potential solutions for reducing cybersickness. In this paper, we demonstrate a method to reduce cybersickness by using a novel rendering technique in the virtual environment (VE)- Dynamic Mono-Stereoscopic Rendering System (DMSRS). The DMSRS system uses two different cameras to create a hybrid rendering that includes monoscopic and stereoscopic systems. By default, VEs are rendered using stereoscopic or monoscopic rendering exclusively. The results indicate that cybersickness decreased amongst users with little to no VR experience hindered when using the DMSRS.  more » « less
Award ID(s):
1850438
PAR ID:
10137159
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2019 11th International Conference on Virtual Worlds and Games for Serious Applications (VS-Games)
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Immersive Analytics (IA) and consumer adoption of augmented reality (AR) and virtual reality (VR) head-mounted displays (HMDs) are both rapidly growing. When used in conjunction, stereoscopic IA environments can offer improved user understanding and engagement; however, it is unclear how the choice of stereoscopic display impacts user interactions within an IA environment. This paper presents a pilot study that examines the impact of stereoscopic display choice on object manipulation and environmental navigation using consumeravailable AR and VR HMDs. Our observations indicate that the display can impact how users manipulate virtual content and how they navigate the environment. 
    more » « less
  2. This literature review examines the existing research into cybersickness reduction with regards to head mounted display use. Cybersickness refers to a collection of negative symptoms sometimes experienced as the result of being immersed in a virtual environment, such as nausea, dizziness, or eye strain. These symptoms can prevent individuals from utilizing virtual reality (VR) technologies, so discovering new methods of reducing them is critical. Our objective in this literature review is to provide a better picture of what cybersickness reduction techniques exist, the quantity of research demonstrating their effectiveness, and the virtual scenes testing has taken place in. This will help to direct researches towards promising avenues, and illuminate gaps in the literature. Following the preferred reporting items for systematic reviews and meta-analyses statement, we obtained a batch of 1,055 papers through the use of software aids. We selected 88 papers that examine potential cybersickness reduction approaches. Our acceptance criteria required that papers examined malleable conditions that could be conceivably modified for everyday use, examined techniques in conjunction with head mounted displays, and compared cybersickness levels between two or more user conditions. These papers were sorted into categories based on their general approach to combating cybersickness, and labeled based on the presence of statistically significant results, the use of virtual vehicles, the level of visual realism, and the virtual scene contents used in evaluation of their effectiveness. In doing this we have created a snapshot of the literature to date so that researchers may better understand what approaches are being researched, and the types of virtual experiences used in their evaluation. Keywords: Virtual reality cybersickness Simulator Sickness Visually induced motion sickness reduction Systematic review Head mounted display. 
    more » « less
  3. null (Ed.)
    Current techniques for characterizing cybersickness (visually induced motion sickness) in virtual environments rely on qualitative questionnaires. For interactive graphics to create visual experiences that enhance the illusion of presence while mitigating cybersickness, interactive measures are needed to characterize cybersickness. In this paper, we acquire EEG signals from participants as they experience vection-induced cybersickness and compare those signals to a baseline. Our study shows that there is a correlation between the participant-reported cybersickness (as measured by movements of a joystick) and brain EEG signals. Through independent component analysis, we separate those signals which are a result of cybersickness from other sources (such as eye blinks). Our user study finds that there is a highly correlative and statistically significant Delta- (1.0–4.0 Hz), Theta- (4.0–7.0 Hz), and Alpha-wave (7.0–13.0 Hz) increase associated with cybersickness in immersive virtual environments across participants. Establishing a strong correlation between cybersickness and EEG-measured brain activity provides us with the first step toward interactively characterizing and mitigating cybersickness in virtual environments. 
    more » « less
  4. The auspicious future of VR could be thwarted by cybersickness. A factor known to influence susceptibility is sex, with females often experiencing higher incidences. A mitigation strategy is to identify individuals who are more sensitive to cybersickness, such that interventions can be implemented before the onset of subjective symptoms. Such an approach could use predictive models that compare a user’s online kinematic body sway and physiological characteristics to data from individuals that reported cybersickness. If such predictive models can be developed, then one approach is altering the virtual environment (VE) based on this real-time data. The benefit of adjusting the VE is that it permits a susceptible individual to use the VR device with a reduction in adverse symptoms. One way to alter the VE is by manipulating optic flow, which can be described as the perceived visual motion of objects that are generated through an observer’s movements. Optic flow can be increased by increasing the level of details in the VE. That is to say, visual displays that contain a lot of details often give rise to stronger subjective sensations of movement. Thus, if the level of details in the VE is reduced, then this may reduce cybersickness reports. 
    more » « less
  5. Active exploration in virtual reality (VR) involves users navigating immersive virtual environments, going from one place to another. While navigating, users often engage in secondary tasks that require attentional resources, as in the case of distracted driving. Inspired by research generally studying the effects of task demands on cybersickness (CS), we investigated how the attentional demands specifically associated with secondary tasks performed during exploration affect CS. Downstream of this, we studied how increased attentional demands from secondary tasks affect spatial memory and navigational performance. We discuss the results of a multi-factorial between-subjects study, manipulating a secondary task's demand across two levels and studying its effects on CS in two different sickness-inducing levels of an exploration experience. The secondary task's demand was manipulated by parametrically varying n in an aural n-back working memory task and the provocativeness of the experience was manipulated by varying how frequently users experienced a yaw-rotational reorientation effect during the exploration. Results revealed that increases in the secondary task's demand increased sickness levels, also resulting in a higher temporal onset rate, especially when the experience was not already highly sickening. Increased attentional demand from the secondary task also vitiated navigational performance and spatial memory. Overall, increased demands from secondary tasks performed during navigation produce deleterious effects on the VR experience. 
    more » « less