skip to main content


Title: 3-D global hybrid simulations of magnetospheric response to foreshock processes
Abstract It has been suggested that ion foreshock waves originating in the solar wind upstream of the quasi-parallel ( Q -||) shock can impact the planetary magnetosphere leading to standing shear Alfvén waves, i.e., the field line resonances (FLRs). In this paper, we carry out simulations of interaction between the solar wind and terrestrial magnetosphere under radial interplanetary magnetic field conditions by using a 3-D global hybrid model, and show the properties of self-consistently generated field line resonances through direct mode conversion in magnetospheric response to the foreshock disturbances for the first time. The simulation results show that the foreshock disturbances from the Q -|| shock can excite magnetospheric ultralow-frequency waves, among which the toroidal Alfvén waves are examined. It is found that the foreshock wave spectrum covers a wide frequency range and matches the band of FLR harmonics after excluding the Doppler shift effects. The fundamental harmonic of field line resonances dominates and has the strongest wave power, and the higher the harmonic order, the weaker the corresponding wave power. The nodes and anti-nodes of the odd and even harmonics in the equatorial plane are also presented. In addition, as the local Alfvén speed increases earthward, the corresponding frequency of each harmonic increases. The field-aligned current in the cusp region indicative of the possibly observable aurora is found to be a result of magnetopause perturbation which is caused by the foreshock disturbances, and a global view substantiating this scenario is given. Finally, it is found that when the solar wind Mach number decreases, the strength of both field line resonance and field-aligned current decreases accordingly.  more » « less
Award ID(s):
1655280
NSF-PAR ID:
10321139
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Earth, Planets and Space
Volume:
73
Issue:
1
ISSN:
1880-5981
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Foreshock transients can result in significant dynamic pressure perturbations downstream, causing the magnetopause to move locally outward and inward. These near‐magnetopause phenomena in turn generate magnetospheric field‐aligned currents (FACs). FACs driven by solar wind impulses are commonly found to be due to flow vortices, but it remains unclear whether the FACs driven by those localized foreshock transients are contributed by flow vortices or pressure gradients. We report on a fortuitous conjunction between the Magnetospheric Multiscale (MMS) mission, which was observing a foreshock transient at the flank of the bow shock, and the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission, immediately downstream of MMS, which was observing magnetopause disturbances arising from that transient. Using observations from the three THEMIS spacecraft to calculate local current density perturbations within the outward motion region of the magnetosphere, we find that flow vortices play a dominant role in generating the current there; the contribution from pressure gradients is one order of magnitude smaller. Using a global hybrid simulation that reproduces the observed foreshock transient perturbations, we traced the simulated FACs generated by the transient's interaction with the magnetopause. We find that in the outward magnetopause motion region the simulated FACs are driven by flow vortices, in agreement with THEMIS observations. Deeper inside the magnetosphere, the faster convection of bipolar flow vortices than the local magnetospheric flow leads to reversal of the simulated FACs. Our results improve our understanding of how foreshock transients disturb and energize the magnetosphere‐ionosphere system.

     
    more » « less
  2. Abstract

    Dayside transients, such as hot flow anomalies, foreshock bubbles, magnetosheath jets, flux transfer events, and surface waves, are frequently observed upstream from the bow shock, in the magnetosheath, and at the magnetopause. They play a significant role in the solar wind-magnetosphere-ionosphere coupling. Foreshock transient phenomena, associated with variations in the solar wind dynamic pressure, deform the magnetopause, and in turn generates field-aligned currents (FACs) connected to the auroral ionosphere. Solar wind dynamic pressure variations and transient phenomena at the dayside magnetopause drive magnetospheric ultra low frequency (ULF) waves, which can play an important role in the dynamics of Earth’s radiation belts. These transient phenomena and their geoeffects have been investigated using coordinated in-situ spacecraft observations, spacecraft-borne imagers, ground-based observations, and numerical simulations. Cluster, THEMIS, Geotail, and MMS multi-mission observations allow us to track the motion and time evolution of transient phenomena at different spatial and temporal scales in detail, whereas ground-based experiments can observe the ionospheric projections of transient magnetopause phenomena such as waves on the magnetopause driven by hot flow anomalies or flux transfer events produced by bursty reconnection across their full longitudinal and latitudinal extent. Magnetohydrodynamics (MHD), hybrid, and particle-in-cell (PIC) simulations are powerful tools to simulate the dayside transient phenomena. This paper provides a comprehensive review of the present understanding of dayside transient phenomena at Earth and other planets, their geoeffects, and outstanding questions.

     
    more » « less
  3. Abstract

    Understanding the physical mechanisms responsible for the cross‐scale energy transport and plasma heating from solar wind into the Earth's magnetosphere is of fundamental importance for magnetospheric physics and for understanding these processes in other places in the universe with comparable plasma parameter ranges. This paper presents observations from the Magnetosphere Multiscale (MMS) mission at the dawn‐side high‐latitude dayside boundary layer on February 25, 2016 between 18:55 and 20:05 UT. During this interval, MMS encountered both the inner and outer boundary layers with quasiperiodic low frequency fluctuations in all plasma and field parameters. The frequency analysis and growth rate calculations are consistent with the Kelvin‐Helmholtz instability (KHI). The intervals within the low frequency wave structures contained several counter‐streaming, low‐ (0–200 eV) and mid‐energy (200 eV–2 keV) electrons in the loss cone and trapped energetic (70–600 keV) electrons in alternate intervals. The counter‐streaming electron intervals were associated with large‐magnitude field‐aligned Poynting fluxes. Burst mode data at the large Alfvén velocity gradient revealed a strong correlation between counter streaming electrons, enhanced parallel electron temperatures, strong anti‐field aligned wave Poynting fluxes, and wave activity from sub‐proton cyclotron frequencies extending to electron cyclotron frequency. Waves were identified as Kinetic Alfvén waves but their contribution to parallel electron heating was not sufficient to explain the >100 eV electrons.

     
    more » « less
  4. Abstract

    We studied the spatiotemporal structure of ground magnetic pulsations on the dayside by displaying magnetic field perturbations detected by the European quasi‐Meridional Magnetometer Array (EMMA) as 2‐D images in the magneticLvalue versus time space, called EMMAgrams. We generated EMMAgrams from observations made on 15 August 2015, including a previously studied pulsation event associated with an interplanetary shock. In addition to signatures of field line resonance driven by a cavity mode oscillation, we found poleward propagating structures withL‐independent periods in the Pc2 band. The Pc2 structures are attributed to periodic magnetohydrodynamic pulses (upstream waves) originating from the ion foreshock and propagating in the magnetosphere along the path proposed by Tamao. Ringing of local field lines atL‐dependent periods (transient pulsations) is also clearly detected as dispersive poleward propagating structures not only immediately after the shock impact but also during time periods of less obvious external disturbances. A transient pulsation decays after a few wave periods, and cross‐spectral analysis of transient pulsations detected at two stations with a small latitudinal separation indicates elevation of the cross phase in a band delimited by the field line resonance frequencies at the stations. Successive excitation of transient pulsations by variations of the solar wind dynamic pressure appears to contribute significantly to formation of similar cross‐phase peaks that are widely used in magnetoseismic studies.

     
    more » « less
  5. Abstract

    Recent studies of Pc5‐band (150–600 s) ultralow frequency waves found that foreshock disturbances can be a driver of dayside compressional waves and field line resonance, which are two typical Pc5 wave modes in the dayside magnetosphere. However, it is difficult to find spatial structure of dayside Pc5 waves using a small number of satellites or ground magnetometers. This study determines 2‐D structure of dayside Pc5 waves and their driver by utilizing coordinated observations by the THEMIS satellites and the all‐sky imager at South Pole during two series of Pc5 waves on 29 June 2008. These Pc5 waves were found to be field line resonances (FLRs) and driven by foreshock disturbances. The ground‐based all‐sky imager at South Pole shows that periodic poleward moving arcs occurred simultaneously with the FLRs near the satellite footprints over ~3°latitude and had the same frequencies as FLRs. This indicates that they are the auroral signature of the FLRs. The azimuthal distribution of the FLRs in the magnetosphere and their north‐south width in the ionosphere were further determined in the 2‐D images. In the first case, the FLRs distribute symmetrically in the prenoon and postnoon regions with out‐of‐phase oscillation as the odd toroidal mode in the equatorial plane. In the second case, the azimuthal wavelengths of the 350–500 s and 300–450 s period waves were ~8.0 and ~5.2 Re in the equatorial plane. It also shows a fine azimuthal structure embedded in the large‐scale arcs, indicating that a high azimuthal wave number (m~ 140) mode wave coupled with the low‐wave number FLRs.

     
    more » « less