skip to main content


Title: Predictability of North Atlantic Sea Surface Temperature and Upper-Ocean Heat Content
Understanding the extent to which Atlantic sea surface temperatures (SSTs) are predictable is important due to the strong climate impacts of Atlantic SST on Atlantic hurricanes and temperature and precipitation over adjacent landmasses. However, models differ substantially on the degree of predictability of Atlantic SST and upper-ocean heat content (UOHC). In this work, a lower bound on predictability time scales for SST and UOHC in the North Atlantic is estimated purely from gridded ocean observations using a measure of the decorrelation time scale based on the local autocorrelation. Decorrelation time scales for both wintertime SST and UOHC are longest in the subpolar gyre, with maximum time scales of about 4–6 years. Wintertime SST and UOHC generally have similar decorrelation time scales, except in regions with very deep mixed layers, such as the Labrador Sea, where time scales for UOHC are much larger. Spatial variations in the wintertime climatological mixed layer depth explain 51%–73% (range for three datasets analyzed) of the regional variations in decorrelation time scales for UOHC and 26%–40% (range for three datasets analyzed) of the regional variations in decorrelation time scales for wintertime SST in the extratropical North Atlantic. These results suggest that to leading order decorrelation time scales for UOHC are determined by the thermal memory of the ocean.  more » « less
Award ID(s):
1756223
NSF-PAR ID:
10137790
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Journal of Climate
Date Published:
Journal Name:
Journal of Climate
Volume:
32
Issue:
10
ISSN:
0894-8755
Page Range / eLocation ID:
3005 to 3023
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study uses observational and reanalysis datasets in 1980–2016 to show a close connection between a boreal autumn sea ice dipole in the Arctic Pacific sector and sea ice anomalies in the Barents Sea (BS) during the following spring. The September–October Arctic Pacific sea ice dipole variations are highly correlated with the subsequent April–May BS sea ice variations ( r = 0.71). The strong connection between the regional sea ice variabilities across the Arctic uncovers a new source of predictability for spring BS sea ice prediction at 7-month lead time. A cross-validated linear regression prediction model using the Arctic Pacific sea ice dipole with 7-month lead time is demonstrated to have significant prediction skills with 0.54–0.85 anomaly correlation coefficients. The autumn sea ice dipole, manifested as sea ice retreat in the Beaufort and Chukchi Seas and expansion in the East Siberian and Laptev Seas, is primarily forced by preceding atmospheric shortwave anomalies from late spring to early autumn. The spring BS sea ice increases are mostly driven by an ocean-to-sea ice heat flux reduction in preceding months, associated with reduced horizontal ocean heat transport into the BS. The dynamical linkage between the two regional sea ice anomalies is suggested to involve positive stratospheric polar cap anomalies during autumn and winter, with its center slowly moving toward Greenland. The migration of the stratospheric anomalies is followed in midwinter by a negative North Atlantic Oscillation–like pattern in the troposphere, leading to reduced ocean heat transport into the BS and sea ice extent increase. 
    more » « less
  2. Abstract We assess to what extent seven state-of-the-art dynamical prediction systems can retrospectively predict winter sea surface temperature (SST) in the subpolar North Atlantic and the Nordic seas in the period 1970–2005. We focus on the region where warm water flows poleward (i.e., the Atlantic water pathway to the Arctic) and on interannual-to-decadal time scales. Observational studies demonstrate predictability several years in advance in this region, but we find that SST skill is low with significant skill only at a lead time of 1–2 years. To better understand why the prediction systems have predictive skill or lack thereof, we assess the skill of the systems to reproduce a spatiotemporal SST pattern based on observations. The physical mechanism underlying this pattern is a propagation of oceanic anomalies from low to high latitudes along the major currents, the North Atlantic Current and the Norwegian Atlantic Current. We find that the prediction systems have difficulties in reproducing this pattern. To identify whether the misrepresentation is due to incorrect model physics, we assess the respective uninitialized historical simulations. These simulations also tend to misrepresent the spatiotemporal SST pattern, indicating that the physical mechanism is not properly simulated. However, the representation of the pattern is slightly degraded in the predictions compared to historical runs, which could be a result of initialization shocks and forecast drift effects. Ways to enhance predictions could include improved initialization and better simulation of poleward circulation of anomalies. This might require model resolutions in which flow over complex bathymetry and the physics of mesoscale ocean eddies and their interactions with the atmosphere are resolved. Significance Statement In this study, we find that dynamical prediction systems and their respective climate models struggle to realistically represent ocean surface temperature variability in the eastern subpolar North Atlantic and Nordic seas on interannual-to-decadal time scales. In previous studies, ocean advection is proposed as a key mechanism in propagating temperature anomalies along the Atlantic water pathway toward the Arctic Ocean. Our analysis suggests that the predicted temperature anomalies are not properly circulated to the north; this is a result of model errors that seems to be exacerbated by the effect of initialization shocks and forecast drift. Better climate predictions in the study region will thus require improving the initialization step, as well as enhancing process representation in the climate models. 
    more » « less
  3. Abstract

    This paper describes the new Regional Arctic Ocean/sea ice Reanalysis (RARE) with a domain that spans a subpolar/polar cap poleward of 45°N. Sequential data assimilation constrains temperature and salinity using World Ocean Database profiles as well as in situ and satellite SST, and PIOMAS sea ice thickness estimates. The 41-yr (1980–2020) RARE1.15.2 reanalysis with resolution varying between 2 and 5 km horizontally and 1–10 m vertically in the upper 100 m is examined. To explore the impact of resolution RARE1.15.2 is compared to a coarser-resolution SODA3.15.2, which uses the same modeling and data assimilation system. Improving resolution in the reanalysis system improves agreement with observations. It produces stronger more compact currents, enhances eddy kinetic energy, and strengthens along-isopycnal heat and salt transports, but reduces vertical exchanges and thus strengthens upper ocean haline stratification. RARE1.15.2 and SODA3.15.2 are also compared to the Hadley Center EN4.2.2 statistical objective analysis. In regions of reasonable data coverage such as the Nordic seas the three products produce similar time-mean distributions of temperature and salinity. But in regions of poor coverage and in regions where the coverage changes in time EN4.2.2 suffers more from those inhomogeneities. Finally, the impact on the Arctic of interannual temperature fluctuations in the subpolar gyres on the Arctic Ocean is compared. The influence of the subpolar North Pacific is limited to a region surrounding Bering Strait. The influence of the subpolar North Atlantic, in contrast, spreads throughout the Nordic seas and Barents Sea in all three products within two years.

    Significance Statement

    The Arctic Ocean/sea ice system plays crucial roles in climate variability and change by controlling the northern end of the oceanic overturning circulation, the equator to pole air pressure gradient, and Earth’s energy balance. Yet the historical ocean observation set is sparse and inhomogeneous, while ocean dynamics has challengingly fine horizontal and vertical scales. This paper introduces a new Regional Arctic Ocean/sea ice Reanalysis (RARE) whose goal is to use the combined constraints of mesoscale ocean dynamics, historical observations, surface meteorology, and continental runoff in a data assimilation framework to reconstruct historical variability. RARE is used to produce a 41-yr ocean/sea ice reanalysis 1980–2020 whose results are described here.

     
    more » « less
  4. Abstract

    An open question in the study of climate prediction is whether internal variability will continue to contribute to prediction skill in the coming decades, or whether predictable signals will be overwhelmed by rising temperatures driven by anthropogenic forcing. We design a neural network that is interpretable such that its predictions can be decomposed to examine the relative contributions of external forcing and internal variability to future regional sea surface temperature (SST) trend predictions in the near-term climate (2020–2050). We show that there is additional prediction skill to be garnered from internal variability in the Community Earth System Model version 2 Large Ensemble, even in a relatively high forcing future scenario. This predictability is especially apparent in the North Atlantic, North Pacific and Tropical Pacific Oceans as well as in the Southern Ocean. We further investigate how prediction skill covaries across the ocean and find three regions with distinct coherent prediction skill driven by internal variability. SST trend predictability is found to be associated with consistent patterns of decadal variability for the grid points within each region.

     
    more » « less
  5. Abstract

    Tropical cyclone (TC) landfalls over the U.S. mid-Atlantic region, which include the so-called Sandy-like, or westward-curving, tracks, are among the most infrequent landfalls along the U.S. East Coast. However, when these events do occur, the resulting economic and societal consequences can be devastating. A recent example is Hurricane Sandy in 2012. Multimodel ensemble seasonal hindcasts conducted with a high-atmospheric-resolution coupled prediction system based on the ECMWF operational model (Project Minerva) are used here to compile the statistics of these rare events. Minerva hindcasts are found to exhibit skill in reproducing climatological characteristics of the mid-Atlantic TC landfalls particularly at the highest atmospheric horizontal spectral resolution of T1279 (16-km grid spacing). Historical forecasts are further interrogated to identify regional and large-scale environmental conditions associated with these rare TC tracks to better quantify their predictability on synoptic time scales, and their dependence on model resolution. Evolution of the large-scale atmospheric flow patterns leading to mid-Atlantic TC landfalls is analyzed using local finite-amplitude wave activity (LWA). We have identified large-amplitude quasi-stationary features in the LWA and sea surface temperature (SST) anomaly distributions that persist up to about a week leading to these land-falling events. A statistical model utilizing indices based on the LWA and SST anomalies as predictors is developed that exhibits skill (mostly at T1279) in predicting mid-Atlantic TC landfalls several days in advance. Implications of these results for longer time-scale predictions of mid-Atlantic TC landfalls including climate change projections are discussed.

     
    more » « less