Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The Lagrangian method—where current location and intensity are determined by tracking the movement of flow along its path—is the oldest technique for measuring the ocean circulation. For centuries, mariners used compilations of ship drift data to map out the location and intensity of surface currents along major shipping routes of the global ocean. In the mid‐20th century, technological advances in electronic navigation allowed oceanographers to continuously track freely drifting surface buoys throughout the ice‐free oceans and begin to construct basin‐scale, and eventually global‐scale, maps of the surface circulation. At about the same time, development of acoustic methods to track neutrally buoyant floats below the surface led to important new discoveries regarding the deep circulation. Since then, Lagrangian observing and modeling techniques have been used to explore the structure of the general circulation and its variability throughout the global ocean, but especially in the Atlantic Ocean. In this review, Lagrangian studies that focus on pathways of the upper and lower limbs of the Atlantic Meridional Overturning Circulation (AMOC), both observational and numerical, have been gathered together to illustrate aspects of the AMOC that are uniquely captured by this technique. These include the importance of horizontal recirculation gyres and interior (as opposed to boundary) pathways, the connectivity (or lack thereof) of the AMOC across latitudes, and the role of mesoscale eddies in some regions as the primary AMOC transport mechanism. There remain vast areas of the deep ocean where there are no direct observations of the pathways of the AMOC.more » « less
-
Understanding the extent to which Atlantic sea surface temperatures (SSTs) are predictable is important due to the strong climate impacts of Atlantic SST on Atlantic hurricanes and temperature and precipitation over adjacent landmasses. However, models differ substantially on the degree of predictability of Atlantic SST and upper-ocean heat content (UOHC). In this work, a lower bound on predictability time scales for SST and UOHC in the North Atlantic is estimated purely from gridded ocean observations using a measure of the decorrelation time scale based on the local autocorrelation. Decorrelation time scales for both wintertime SST and UOHC are longest in the subpolar gyre, with maximum time scales of about 4–6 years. Wintertime SST and UOHC generally have similar decorrelation time scales, except in regions with very deep mixed layers, such as the Labrador Sea, where time scales for UOHC are much larger. Spatial variations in the wintertime climatological mixed layer depth explain 51%–73% (range for three datasets analyzed) of the regional variations in decorrelation time scales for UOHC and 26%–40% (range for three datasets analyzed) of the regional variations in decorrelation time scales for wintertime SST in the extratropical North Atlantic. These results suggest that to leading order decorrelation time scales for UOHC are determined by the thermal memory of the ocean.more » « less
-
To provide an observational basis for the Intergovernmental Panel on Climate Change projections of a slowing Atlantic meridional overturning circulation (MOC) in the 21st century, the Overturning in the Subpolar North Atlantic Program (OSNAP) observing system was launched in the summer of 2014. The first 21-month record reveals a highly variable overturning circulation responsible for the majority of the heat and freshwater transport across the OSNAP line. In a departure from the prevailing view that changes in deep water formation in the Labrador Sea dominate MOC variability, these results suggest that the conversion of warm, salty, shallow Atlantic waters into colder, fresher, deep waters that move southward in the Irminger and Iceland basins is largely responsible for overturning and its variability in the subpolar basin.more » « less
An official website of the United States government
