null
(Ed.)
A common rehabilitative technique for those with neuro-muscular disorders is functional electrical stimulation (FES) induced exercise such as FES-induced biceps curls. FES has been shown to have numerous health benefits, such as increased muscle mass and retraining of the nervous system. Closed-loop control of a motorized FES system presents numerous challenges since the system has nonlinear and uncertain dynamics and switching is required between motor and FES control, which is further complicated by the muscle having an uncertain control effectiveness. An additional complication of FES systems is that high gain feedback from traditional robust controllers can be uncomfortable to the participant. In this paper, data-based, opportunistic learning is achieved by implementing an integral concurrent learning (ICL) controller during a motorized and FES-induced biceps curl exercise. The ICL controller uses adaptive feedforward terms to augment the FES controller to reduce the required control input. A Lyapunov-based analysis is performed to ensure exponential trajectory tracking and opportunistic, exponential learning of the uncertain human and machine parameters. In addition to improved tracking performance and robustness, the potential of learning the specific dynamics of a person during a rehabilitative exercise could be clinically significant. Preliminary simulation results are provided and demonstrate an average position error of 0.14 ± 1.17 deg and an average velocity error of 0.004 ± 1.18 deg/s.
more »
« less