skip to main content

Title: Correction: Sub-Doppler infrared spectroscopy of resonance-stabilized hydrocarbon intermediates: ν 3 / ν 4 CH stretch modes and CH 2 internal rotor dynamics of benzyl radical
Correction for ‘Sub-Doppler infrared spectroscopy of resonance-stabilized hydrocarbon intermediates: ν 3 / ν 4 CH stretch modes and CH 2 internal rotor dynamics of benzyl radical’ by A. Kortyna et al. , Phys. Chem. Chem. Phys. , 2017, 19 , 29812–29821.
; ; ;
Award ID(s):
1734006 1665271
Publication Date:
Journal Name:
Physical Chemistry Chemical Physics
Page Range or eLocation-ID:
13374 to 13374
Sponsoring Org:
National Science Foundation
More Like this
  1. Highly reactive benzyl radicals are generated by electron dissociative attachment to benzyl chloride doped into a neon–hydrogen–helium discharge and immediately cooled to T rot = 15 K in a high density, supersonic slit expansion environment. The sub-Doppler spectra are fit to an asymmetric-top rotational Hamiltonian, thereby yielding spectroscopic constants for the ground ( v = 0) and first excited ( v = 1, ν 3 , ν 4 ) vibrational levels of the ground electronic state. The rotational constants obtained for the ground state are in good agreement with previous laser induced fluorescence measurements (LIF), with vibrational band origins ( ν 3 = 3073.2350 ± 0.0006 cm −1 , ν 4 = 3067.0576 ± 0.0006 cm −1 ) in agreement with anharmonically corrected density functional theory calculations. To assist in detection of benzyl radical in the interstellar medium, we have also significantly improved the precision of the ground state rotational constants through combined analysis of the ground state IR and LIF combination differences. Of dynamical interest, there is no evidence in the sub-Doppler spectra for tunneling splittings due to internal rotation of the CH 2 methylene subunit, which implies a significant rotational barrier consistent with partial double bond character inmore »the CC bond. This is further confirmed with high level ab initio calculations at the CCSD(T)-f12b/ccpVdZ-f12 level, which predict a zero-point energy corrected barrier to internal rotation of Δ E tun ≈ 11.45 kcal mol −1 or 4005 cm −1 . In summary, the high-resolution infrared spectra are in excellent agreement with simple physical organic chemistry pictures of a strongly resonance-stabilized benzyl radical with a nearly rigid planar structure due to electron delocalization around the aromatic ring.« less
  2. The gyroscope like dichloride complexes trans -Pt(Cl) 2 (P((CH 2 ) n ) 3 P) ( trans -2; n = c, 14; e, 18; g, 22) and MeLi (2 equiv.) react to yield the parachute like dimethyl complexes cis -Pt(Me) 2 (P((CH 2 ) n ) 3 P) ( cis -4c,e,g, 70–91%). HCl (1 equiv.) and cis -4c react to give cis -Pt(Cl)(Me)(P((CH 2 ) 14 ) 3 P) ( cis -5c, 83%), which upon stirring with silica gel or crystallization affords trans -5c (89%). Similar reactions of HCl and cis -4e,g give cis / trans -5e,g mixtures that upon stirring with silica gel yield trans -5e,g. A parallel sequence with trans -2c/EtLi gives cis -Pt(Et) 2 (P((CH 2 ) 14 ) 3 P) ( cis -6c, 85%) but subsequent reaction with HCl affords trans -Pt(Cl)(Et)(P((CH 2 ) 14 ) 3 P) ( trans -7c, 45%) directly. When previously reported cis -Pt(Ph) 2 (P((CH 2 ) 14 ) 3 P) is treated with HCl (1 equiv.), cis - and trans -Pt(Cl)(Ph)(P((CH 2 ) 14 ) 3 P) are isolated (44%, 29%), with the former converting to the latter at 100 °C. Reactions of trans -5c and LiBr or NaI affordmore »the halide complexes trans -Pt(X)(Me)(P((CH 2 ) 14 ) 3 P) ( trans -9c, 88%; trans -10c, 87%). Thermolyses and DFT calculations that include acyclic model compounds establish trans > cis stabilities for all except the dialkyl complexes, for which energies can be closely spaced. The σ donor strengths of the non-phosphine ligands are assigned key roles in the trends. The crystal structures of cis -4c, trans -5c, trans -7c, and trans -10c are determined and analyzed together with the computed structures.« less
  3. The photodissociation dynamics of alkyl iodides along the C–I bond are captured by attosecond extreme-ultraviolet (XUV) transient absorption spectroscopy employing resonant ∼20 fs UV pump pulses. The methodology of previous experiments on CH3I [Chang et al., J. Chem. Phys. 154, 234301 (2021)] is extended to the investigation of a C–I bond-breaking reaction in the dissociative A-band of C2H5I, i-C3H7I, and t-C4H9I. Probing iodine 4 d core-to-valence transitions in the XUV enables one to map wave packet bifurcation at a conical intersection in the A-band as well as coherent vibrations in the ground state of the parent molecules. Analysis of spectroscopic bifurcation signatures yields conical intersection crossing times of 15 ± 4 fs for CH3I, 14 ± 5 fs for C2H5I, and 24 ± 4 fs for i-C3H7I and t-C4H9I, respectively. Observations of coherent vibrations, resulting from a projection of A-band structural dynamics onto the ground state by resonant impulsive stimulated Raman scattering, indirectly reveal multimode C–I stretch and CCI bend vibrations in the A-bands of C2H5I, i-C3H7I, and t-C4H9I.

  4. Abstract

    Carbonyl-bearing complex organic molecules (COMs) in the interstellar medium (ISM) are of significant importance due to their role as potential precursors to biomolecules. Simple aldehydes and ketones like acetaldehyde, acetone, and propanal have been recognized as fundamental molecular building blocks and tracers of chemical processes involved in the formation of distinct COMs in molecular clouds and star-forming regions. Although previous laboratory simulation experiments and modeling established the potential formation pathways of interstellar acetaldehyde and propanal, the underlying formation routes to the simplest ketone—acetone—in the ISM are still elusive. Herein, we performed a systematic study to unravel the synthesis of acetone, its propanal and propylene oxide isomers, as well as the propenol tautomers in interstellar analog ices composed of methane and acetaldehyde along with isotopic-substitution studies to trace the reaction pathways of the reactive intermediates. Chemical processes in the ices were triggered at 5.0 K upon exposure to proxies of Galactic cosmic rays in the form of energetic electrons. The products were detected isomer-selectively via vacuum ultraviolet (VUV) photoionization reflectron time-of-flight mass spectrometry. In our experiments, the branching ratio of acetone (CH3COCH3):propylene oxide (c-CH3CHOCH2):propanal (CH3CH2CHO) was determined to be (4.82 ± 0.05):(2.86 ± 0.13):1. The radical–radical recombination reaction leading tomore »acetone emerged as the dominant channel. The propenols appeared only at a higher radiation dose via keto–enol tautomerization. The current study provides mechanistic information on the fundamental nonequilibrium pathways that may be responsible for the formation of acetone and its (enol) isomers inside the interstellar icy grains.

    « less
  5. Pure methane (CH 4 ) ices processed by energetic electrons under ultra-high vacuum conditions to simulate secondary electrons formed via galactic cosmic rays (GCRs) penetrating interstellar ice mantles have been shown to produce an array of complex hydrocarbons with the general formulae: C n H 2n+2 ( n = 4–8), C n H 2n ( n = 3–9), C n H 2n−2 ( n = 3–9), C n H 2n−4 ( n = 4–9), and C n H 2n−6 ( n = 6–7). By monitoring the in situ chemical evolution of the ice combined with temperature programmed desorption (TPD) studies and tunable single photon ionization coupled to a reflectron time-of-flight mass spectrometer, specific isomers of C 3 H 4 , C 3 H 6 , C 4 H 4 , and C 4 H 6 were probed. These experiments confirmed the synthesis of methylacetylene (CH 3 CCH), propene (CH 3 CHCH 2 ), cyclopropane (c-C 3 H 6 ), vinylacetylene (CH 2 CHCCH), 1-butyne (HCCC 2 H 5 ), 2-butyne (CH 3 CCCH 3 ), 1,2-butadiene (H 2 CCCH(CH 3 )), and 1,3-butadiene (CH 2 CHCHCH 2 ) with yields of 2.17 ± 0.95 × 10 −4 , 3.7 ±more »1.5 × 10 −3 , 1.23 ± 0.77 × 10 −4 , 1.28 ± 0.65 × 10 −4 , 4.01 ± 1.98 × 10 −5 , 1.97 ± 0.98 × 10 −4 , 1.90 ± 0.84 × 10 −5 , and 1.41 ± 0.72 × 10 −4 molecules eV −1 , respectively. Mechanistic studies exploring the formation routes of methylacetylene, propene, and vinylacetylene were also conducted, and revealed the additional formation of the 1,2,3-butatriene isomer. Several of the above isomers, methylacetylene, propene, vinylacetylene, and 1,3-butadiene, have repeatedly been shown to be important precursors in the formation of polycyclic aromatic hydrocarbons (PAHs), but until now their interstellar synthesis has remained elusive.« less