skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Programmed Locomotion of an Active Gel Driven by Spiral Waves
Abstract Active media that host spiral waves can display complex modes of locomotion driven by the dynamics of those waves. We use a model of a photosensitive stimulus‐responsive gel that supports the propagation of spiral chemical waves to study locomotive transition and programmed locomotion. The mode transition between circular and toroidal locomotion results from the onset of spiral tip meandering that arises via a secondary Hopf bifurcation as the level of illumination is increased. This dynamic instability of the system introduces a second circular locomotion with a small diameter caused by tip meandering. The original circular locomotion with large diameter is driven by the push‐pull asymmetry of the wavefront and waveback of the simple spiral waves initiated at one corner of gel. By harnessing this mode transition of the gel locomotion via coded illumination, we design programmable pathways of nature‐inspired angular locomotion of the gel.  more » « less
Award ID(s):
1856484
PAR ID:
10139144
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
59
Issue:
18
ISSN:
1433-7851
Page Range / eLocation ID:
p. 7106-7112
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Asymmetry in the interaction between an individual and its environment is generally considered essential for the directional properties of active matter, but can directional locomotions and their transitions be generated only from intrinsic chemical dynamics and its modulation? Here, we examine this question by simulating the locomotion of a bioinspired active gel in a homogeneous environment. We find that autonomous directional locomotion emerges in the absence of asymmetric interaction with the environment and that a transition between modes of gel locomotion can be induced by adjusting the spatially uniform intensity of illumination or certain kinetic and mechanical system parameters. The internal wave dynamics and its structural modulation act as the impetus for signal-driven active locomotion in a manner similar to the way in which an animal’s locomotion is generated via driving by nerve pulses. Our results may have implications for the development of soft robots and biomimetic materials. 
    more » « less
  2. Abstract Abrupt (i. e. step) environmental changes, such as natural disasters or the intervention of predators, can alter the internal dynamics of groups with active units, leading to the rapid destruction and/or restructuring of the group, with the emergence of new collective structures that endow the system with adaptability. Few studies, to date, have considered the influence of abrupt environmental changes on emergent behavior. Here, we use a model of active matter, the Belousov‐Zhabotinsky (BZ) self‐oscillating gel, to study the mechanism of formation and transition between modes of collective locomotion caused by changes of illumination intensity in arrays of interacting photosensitive active units. New forms of collective motion can be generated by step changes of illumination intensity. These transformations arise from the phase resetting and wave‐signal regeneration induced by the abrupt parameter variation, while gradual change results in different evolution of collective motion. Our results not only suggest a novel mechanism for emergence, but also imply that new collective behaviors could be accessible via discontinuous parameter changes. 
    more » « less
  3. Dominant flow features in the near and intermediate wake of a horizontal-axis wind turbine are studied at near field-scale Reynolds numbers. Measurements of the axial velocity component were performed using a nano-scale hot-wire anemometer and analyzed using spectral methods to reveal the extent and evolution of the flow features. Experiments were conducted at a range of Reynolds numbers, of [Formula: see text], based on the rotor diameter and freestream velocity. Five different downstream locations were surveyed, between [Formula: see text], including the near wake, transition to the intermediate wake, and the intermediate wake. Three dominant wake features are identified and studied: the tip vortices, an annular shear layer in the wake core, and wake meandering. The tip vortices are shown to have a broadband influence in the flow in their vicinity, which locally alters the turbulence in that area. It is shown that shedding in the wake core and wake meandering are two distinct and independent low frequency features, and the wake meandering persists into the intermediate wake, whereas the signatures of the core shedding vanish early in the near wake. 
    more » « less
  4. We apply Lagrangian particle tracking to the two-dimensional single-mode Rayleigh–Taylor (RT) instability to study the dynamical evolution of fluid interface. At the onset of the nonlinear RT stage, we select three ensembles of tracer particles located at the bubble tip, at the spike tip, and inside the spiral of the mushroom structure, which cover most of the interfacial region as the instability develops. Conditional statistics performed on the three sets of particles and over different RT evolution stages, such as the trajectory curvature, velocity, and acceleration, reveals the temporal and spatial flow patterns characterizing the single-mode RT growth. The probability density functions of tracer particle velocity and trajectory curvature exhibit scalings compatible with local flow topology, such as the swirling motion of the spiral particles. Large-scale anisotropy of RT interfacial flows, measured by the ratio of horizontal to vertical kinetic energy, also varies for different particle ensembles arising from the differing evolution patterns of the particle acceleration. In addition, we provide direct evidence to connect the RT bubble re-acceleration to its interaction with the transported fluid from the spike side, due to the shear driven Kelvin–Helmholtz instability. Furthermore, we reveal that the secondary RT instability inside the spiral, which destabilizes the spiraling motion and induces complex flow structures, is generated by the centrifugal acceleration. 
    more » « less
  5. Abstract We study mass ejection from a binary neutron star merger producing a long-lived massive neutron star remnant with general-relativistic neutrino-radiation hydrodynamics simulations. In addition to outflows generated by shocks and tidal torques during and shortly after the merger, we observe the appearance of a wind driven by spiral density waves in the disk. This spiral-wave-driven outflow is predominantly located close to the disk orbital plane and have a broad distribution of electron fractions. At higher latitudes, a high electron-fraction wind is driven by neutrino radiation. The combined nucleosynthesis yields from all the ejecta components is in good agreement with Solar abundance measurements. 
    more » « less